
Analyzing system characteristics for graph 
algorithms across different graph frameworks

CS 784, Final Project, Group 10 

Aakarsh Agarwal
Mohil Patel
Sweksha Shukla

(Dept. of Computer Sciences/CDIS)



Motivation

- Today we have huge graphs like social networks, web graphs, protein 
interaction graphs, etc

- To analyze and generate insights different graph specific algorithms are run 
on these graphs

- We have many different graph frameworks for running these algorithms. They 
all uses different techniques and partitioning schemes to process the graphs, 
like:

- GraphChi - single machine framework, uses Parallel Sliding Window concept to minimizes 
memory consumption while ensuring low disk reads

- GraphX - multi-node framework over spark, specialized operations for better performance and 
vertex-cut partitioning to minimize communication overhead

- GraphFrames - multi-node framework designed to think of graphs as relational table with 
processing as queries

- Why of these are a better choice? And when?



Objective and Goals

- Comparing execution time and system characteristics of different graph 
frameworks

- Why graph algorithms are compared?
- Pagerank
- Connected Components
- Triangle Counting

- Graph processing frameworks analyzed:
Spark Multi-Node Framework

GraphX Multi-Node Framework

GraphFrames Multi-Node Framework

GraphChi Single Machine Framework



Experimental Setup

- All the experiments are run on Cloudlab
- For Multi-node frameworks we used 3 VMs each
- And Single Machine Framework is run on 1 VM
- Each VM hardware details:

- Each Framework was configured to utilize all the resources to max capacity

Cloudlab Machine c220g1

CPU Intel Xeon E5-2630

No. of Cores 5

RAM 32 GB

Disk Space 96 GB



Pagerank

Measurements are for 50 iterations in all systems.

Datasets Nodes Edges

Berkeley-Stanford web graph 685,230 7,600,595

Pokec social network 1,632,803 30,622,564

LiveJournal social network 4,847,571 68,993,773



Execution Time

- GraphChi sees better timing for 
smaller graphs, but as graph 
size increases its performance 
is similar to GraphX.

- GraphFrames shows the worst 
timings, even worse than spark 
custom implementation.



CPU Usage (%)

- GraphChi shows low CPU utilization even with very good performance
- In GraphX only nodes 1 & 2 are showing CPU usage. This is probably because 

GraphX partitioning is designed to minimize communication overhead. (We expect it 
to use all nodes for larger graphs)

- Spark and GraphFrames are showing high CPU usage



Disk Throughput

- GraphChi shows the 
highest Disk Read 
Throughput as it is 
designed to have 
sequential reads.

- In Disk writes, Spark and 
GraphFrames show 
consistent behavior. 
Whereas in GraphX we 
see huge spikes in 
node-0.



Memory Usage

- GraphChi has lowest 
memory usage which is 
expected as it is designed 
to have low memory 
usage

- GraphFrames shows the 
highest memory usage.

- GraphX (node 0 & 1 
together) shows lower 
memory usage than 
Spark. This is probably 
due to its optimal 
partitioning and indexing 
optimizations.



Network Usage

- GraphX shows smallest 
network usage due to its 
optimal vertex partitioning 
which minimize 
communication 
overhead.

- GraphFrames shows 
high network utilization 
but is also very jittery.

- Spark shows constant 
network usage across all 
3 nodes.



Connected Components
Datasets Nodes Edges

Social circles: Facebook 4,039 88,234

Twitch Gamers Social Network 168,114 6,797,557

LiveJournal network 3,997,962 34,681,189



Execution Time

- GraphChi has the best 
execution time

- GraphX has fastest execution 
in multi-node systems that we 
compared..

- Spark only code implements 
large-small star algorithm 
which has worst performance.



CPU Usage (Master node)

- GraphChi CPU usage at 
60% but has the best 
performance

- GraphX shows less CPU 
usage for node-0 but shows 
a good utilization in node-1

- Spark has constant cpu 
usage during the time it 
reads data, has peaks after 
that.



Disk Throughput

- All the systems show 
expected read behavior. With 
each system loading data at 
the start.

- GraphFrames shows high 
disk throughput towards the 
end.

- GraphX node-0 also showing 
a spike in disk write towards 
the end.



Memory Usage

- GraphChi is the fastest 
system and it has very 
nominal memory usage 
as expected

- GraphFrames is having 
highest memory usage 
followed by GraphX

- Spark is having a 
constant memory 
usage throughout the 
job.



Network Usage

- GraphX has lowest 
network activity across 
all systems.

- GraphFrames on the 
other hand has high 
network activity 
suggesting its 
partitioning might not be 
optimal.

- Spark’s behavior is in 
spikes at regular 
intervals.



Triangle Counting
Datasets Nodes Edges

Social circles: Facebook 4,039 88,234

Twitch Gamers Social Network 168,114 6,797,557

LiveJournal network 3,997,962 34,681,189

- Skipping this considering time constraints
- Similar behavior as pointed out till now
- More details in the report



Conclusion

- GraphChi seems to be the fastest system for all graph size. Except for 
pagerank where large graphs might perform better on GraphX.

- GraphChi is designed for low memory usage, which is reflected in its plots. 
But due to this design, it needs to read data from disk more frequently which 
might be the reason for its CPU usage bottleneck to around 60%.

- GraphX shows lowest network activity across multi-node systems. This is 
because it’s vertex partitioning and data sharing is designed to have low 
communication overhead.

- GraphFrames has high network usage which might suggests that its data 
partitioning might not be most optimal. Also it has highest CPU and memory 
usage.



Thank You


