
Low Bandwidth Google File System
Aadi Swadipto Mondal Mohil Patel Rahul Uday Chakwate

Project Group 3-15
1 LB-GFS DESIGN

Figure 1: Overall Design

1.0.1 Key Design Principles. The overall design is
summarized in figure 1

(1) We developed a wrapper over HDFS to optimize
the system over low-bandwidth networks.

(2) We partition files into chunks (similar to HDFS
or GFS). The hashes (specifically SHA-256) of
these chunks are then used to identify similar
chunks present both on the client and server and
need not be transmitted over the network.

(3) Chunks are immutable in LB-GFS and are cre-
ated as and when necessary. Un-referenced/unused
chunks are garbage collected at regular intervals.

(4) The chunk size in LB-GFS and the block size in
HDFS are exactly the same. Chunks are stored
in HDFS as separate files. Each file in HDFS
consists of only one HDFS block. This is to en-
sure that we can correlate HDFS blocks directly
to LB-GFS chunks.

1.0.2 Performance issues because of wrapper
methodology. Integrating ideas of LB-GFS into HDFS
is always more efficient. Due to the restriction of time
and resources, we found it difficult to change the HDFS
code base and rather came up with a wrapper on HDFS
to showcase our ideas. Although, this successfully por-
trays our ideas, using a wrapper introduces some crucial
toll on performance.

(1) There is a duplication in meta-data because HDFS
keeps meta-data for tracking files to HDFS blocks.
Very similarly, the LB-GFS wrapper also keeps
track of files to LB-GFS chunks. Since the HDFS
master (i.e. namenode) is bottle-necked by the
memory of the master machine, duplication of
file meta-data can lead to faster depletion of pre-
cious memory resources, thus limiting the sys-
tem.

(2) Data in HDFS can directly be moved to the
chunk servers. Since the wrapper writes the data
in HDFS, we have to first move the data to the
wrapper (which sits on the same machine as that
of the HDFS master, i.e. name node) and then to
the chunk-servers. This can be partially averted
by running one chunk server and HDFS mas-
ter on the same machine so that the data can be
replicated to at least one chunk server without
data transmission over the network.

(3) Integrating ideas of LB-GFS within HDFS will
save additional GRPC and other API calls, mak-
ing the system more efficient.

1.0.3 Application Programming Interface (API).
LB-GFS server communicates with the HDFS master
and creates separate files for each chunk. It also tracks
files to chunk mappings. The client keeps a separate



record of encountered chunks in its own cache and uses
chunk hashes to identify common chunks present in both
the server and the client.

(1) CreateFile(filepath): Creates a new file in the
system. Adds necessary meta-data to track LB-
GFS files and corresponding chunks.

(2) DeleteFile(filepath): Deletes file to chunk map-
pings if present.

(3) ReadFile(filepath, offset, length): Reads spe-
cific portion of a file, returns data as a string.

(4) TentativeAppend(filepath, data): Collect data
locally for appends until the appends are com-
mitted.

(5) CommitAppend(filepath): Push all tentative ap-
pends to the server.

Figure 2: Read Protocol

1.0.4 Read Protocol. The read protocol is described
in figure 2.

(1) The client receives a filename along with the
offset to read from and the number of bytes to
read.

(2) Using this information, we derive the start and
the end chunks (chunk size is constant).

(3) Client requests the hashes from the server for the
corresponding filename and chunks.

(4) For the hashes that are present in the client, the
client reads from the chunks that it is tracking.

(5) For chunks that are absent, the client fetches
those chunks from the server and records them
in its own cache.

(6) Finally client coagulates all the data from the
chunks to the exact offset and length and returns
it to the client.

Figure 3: Append Protocol

1.0.5 Append Protocol. The append protocol is de-
scribed in figure 3.

(1) Tentative appends received from the client are
locally written in a temporary file (created when
it is the first time).

(2) When the client calls to commit, the temporary
file is padded to the multiple of the chunk size,
and chunks are created.

(3) The client sends the chunk hashes to the servers
and receives a list of absent chunks.

(4) Client then, sends the absent chunks to the server.
2



(5) Once the client ensures that the server has all the
chunks, the client sends a request to the server
to update file mappings.

1.0.6 Reconstructing file on server. After the com-
mit is called from the client and the client requests to
update the file mappings, a series of steps happen in the
server to append the new data sent from the client.

(1) Server receives a list of chunk hashes that corre-
spond to the newly appended data chunks.

(2) If the last chunk is incomplete, the server reads
the last chunk and writes to a temporary file.

(3) Server reads the new data and appends it to the
temporary file.

(4) The temporary file is again used to form new
chunks and is updated in the chunk-reference
map.

(5) Finally file mapping and the file sizes are up-
dated with the new chunk hashes.

2 EXPERIMENTS
2.1 Experimental Setup
We measured the performance of our system on a 4 node
cluster with 100 Mbps internode network speed.

Our workload parameters are as follows.

• Block size - HDFS chunk size
• # distinct keys - Total number of distinct events

strings that we append in the file
• key size - size of each individual event string

2.2 Data Transmitted over time
experiment

In this experiment, we find the data transmitted over the
network from client to the server over time. Figure 4a
shows this plot for a block size of 1024 bytes, key size
of 256 bytes and 4 distinct keys. We observe that as the
experiment begins, data is sent from client to the server
at a linear pace. Once the server has cached sufficient
blocks, the data transmitted over the network reaches
saturation. This means that the server has all the required
data to recreate blocks and append them to the file. No
new data is being transmitted to the server.

Figure 4b shows the same plot for a block size of
1536 bytes. We observe that as the block size increases,
the total number of possible distinct blocks sent from
client to server increases exponentially. Hence, it takes

longer from the server to receive all possible distinct
data and hence it reaches saturation at a later point in
time, compared to the previous run.

(a) Block size of 1024 bytes

(b) Block size of 1536 bytes

Figure 4: Data transmitted over the network against
time

2.3 Variation with block size
In the following set of experiments, we measure through-
put variation and % of total data transmitted over the
network against different tunable parameters of LB-GFS.
We compare LB-GFS against (a) passthrough - a setup
in which the appends from client to server are directly
written to the HDFS file, and (b) passthrough with batch-
ing - appends are batched locally and written on server
once the commit call is made.

Figure 5 shows throughput variation against block
size. We increase the block size from 1024 bytes (1 KB)
to 131072 bytes (128 KB) and observe that throughput is
very high for the 1024 bytes block size. This is intuitive
because only a limited distinct blocks can be formed

3



for a smaller block size and once server receives that
data, throughput increases by a large margin. As block
size increases, we see diminishing improvements in our
system. In Figure 6 we observe the trend in percentage
of total data transmitted over the network as the block
size increases. Only around 1% of the data is transmitted
for a smaller block size, and this number increases as
block size increases.

Figure 5: Throughput variation with respect to block
size

Figure 6: Percentage of total data transmitted over
network against block size

2.4 Variation with number of distinct
keys

Here we measure the performance variation with re-
spect to the number of distinct events that get appended
to the file in our workload. As seen in Figure 7, we

observe high throughput for 4 distinct keys and dimin-
ishing throughput as we increase distinct events from
4 to 48. This suggests that our system works great for
workloads with more repetitive appends to a file, i.e.
when there exist only a few distinct events to be ap-
pended. Similarly in Figure 8 we see that as the number
of distinct keys increases, more % of data is transmitted
over the network, as now there are more possibilities
generated for distinct blocks which may not match to
the ones present on the server.

Figure 7: Throughput variation with respect to #
distinct keys

Figure 8: Percentage of total data transmitted over
network against # distinct keys

2.5 Variation with key size
Here we measure our system’s performance with respect
to the size of the individual events that we append to our
file. In Figure 9 we see an expected trend of through-
put variation. As the key size increases, the number of

4



possibilities for distinct blocks reduces which leads to
lesser percentage of total data being transmitted to the
server (Figure 10), which also results in an increased
throughput.

Figure 9: Throughput variation with respect to key
size

Figure 10: Percentage of total data transmitted over
network against key size

3 TAKEAWAYS
• By implementing Low Bandwidth optimizations

on HDFS, there is an improvement in saving
both bandwidth and storage compared to base
HDFS (or GFS).

• The extent of these benefits varies depending on
the characteristics of the workload.

• The system warmup time is determined by the
number of distinct blocks that are possible within
a workload.

• This time can be shortened by creating new blocks
through both client data transmission and server
file reconstruction.

5


	1 LB-GFS Design
	2 Experiments
	2.1 Experimental Setup
	2.2 Data Transmitted over time experiment
	2.3 Variation with block size
	2.4 Variation with number of distinct keys
	2.5 Variation with key size

	3 Takeaways

