
Replicated Key-Value Store
Aadi Swadipto Mondal Mohil Patel Rahul Uday Chakwate

Project Group 2/8
1 WISC AFS DESIGN

Figure 1: Leader design

1.0.1 Key Design Principles. Our replicated distributed
key-value database is designed using Raft. The follow-
ing points describe the key design designs of our dis-
tributed database.

(1) Our entire system is designed using polling-based
ideology. There is no signaling between threads
(like condition variables). Each thread runs inde-
pendently, polls and updates shared (persistent)
states, and decides actions based on their values.
Threads yield whenever they have no work to
allow other threads to run.

(2) All persistent states are updated atomically (us-
ing locks and atomic instructions).

(3) Log entries are lazily synced with followers (Leader
maintains a separate follower thread for each fol-
lower for performing log sync).

(4) Client uses a token system to track “put” requests
(always served by the leader).

(5) Election procedure is modified to ensure the can-
didate with the most updated log wins.

1.0.2 Leader Design. The leader design is described
in figure 1.

(1) Leader receives client "put" requests using a
multi-threaded GRPC server and en-queues them
in a multi-producer, single-consumer queue. In
our case, we have used lock-less queues to im-
prove performance.

Figure 2: Follower design

(2) A separate consumer thread de-queues entries
from the queue and writes them in a persistent
log (we use a log file to make it persistent).

(3) For each follower, a separate follower thread
reads those logs and tries to sync them with its
designated follower. If there is a mismatch in
the previous log entry, this follower thread decre-
ments the last-sync-index till the logs match for
both and then syncs the rest of the leader logs.

(4) For every log entry, follower threads update a
shared state for the majority count. Once a major-
ity is received, it updates the last-commit index.

(5) A LevelDB sync thread reads the last-commit
index and updates the state machine (LevelDB)
if there are any committed logs left to apply
on the state machine. It also sends a positive
acknowledgment to the client once those logs
are applied.

(6) Leader also responds to "get" requests from the
client once it has at least one entry of its term
committed.

(7) GRPC server listens for Request-Vote and Append-
Entry RPCs with higher term numbers. On re-
ceipt, it steps down from leader to follower and
sends negative acknowledgments for client re-
quests in the queue.



Figure 3: Election

1.0.3 Follower Design. The follower design is de-
scribed in figure 2.

(1) GRPC servers listen for Append-Entry and Request-
Vote RPCs.

(2) On receipt of an Append-Entry RPC, it validates
the previous log. If validation fails, it sends fail-
ure to the leader. On success, it writes the log in
persistent storage.

(3) Append-Entry RPC also updates the last-commit
index. We ensure that we do not decrement the
last-commit index. If the leader tries to sync a log
entry below the last-commit index, the follower
asserts that the present entry and the RPC entry
are exactly the same.

(4) In case of a log overwrite, the follower sends a
negative acknowledgment to the client for the
overwritten entry.

(5) Similar to the leader, a LevelDB sync thread
updates the state machine and sends a positive
acknowledgment to the client.

(6) An election thread wakes up at periodic intervals
to check if any heartbeat was received. If no
heartbeat was received, the follower increments
term and becomes a candidate.

1.0.4 Election Procedure. Apart from the standard
election requirements in Raft, we also introduced an ad-
ditional condition for a candidate to become a leader. A
candidate cannot become a leader if some server denies

Figure 4: Client Token System

the vote to it. This is to ensure minimum log overwrites
occur so that clients do not receive failure for requests.

An example is shown in Figure 3, let’s assume that
the leader gets into a network partition after syncing
log entries 4-6 only in Follower 1 in a 5-server system.
Followers, 2-4 can still become a leader in the next
election term, i.e. term 3. If that happens, log entries 4-6
will be overwritten by the new leader eventually sending
negative acknowledgments for those 3 entries.

Apart from this, we follow the standards of Raft Elec-
tion. The election thread detects a timeout (in absence of
a leader) and sends Request-Vote RPCs. Any denial of
vote, failure to achieve a majority, or receipt of Append-
Entry and Request-Vote RPCs with higher term numbers
leads to stepping down again to a follower. If the can-
didate successfully becomes the leader, it restarts the
consumer and follower threads. LevelDB sync thread
continues to sync the log when the last-commit index
becomes more than the last-sync index.

1.0.5 Client Token System. The procedure for a
client to communicate with Raft Servers involves multi-
ple steps as shown in figure 4.

(1) Step 1: The client sends a request to the leader
of the raft system. The request contains the client
ID and request number (tracked by the client).

(2) Step 2: The leader then acknowledges receipt of
the request. Although, this may not be successful
if the leader’s queue is already full.

2



Figure 5: RTT latency (99 Percentile and Median)
against throughput

(3) When entries are written in the log, the client ID
and the request number (sent by the client) are
also written in the log entry.

(4) Step 3: For "put" requests, the client will receive
a positive or negative acknowledgment at some
point in the future.

(5) For "get" requests, a successful response can
only be given if the leader has committed at least
one entry of its term.

The client API offers both blocking and non-blocking
put requests, being blocked until acknowledged or a
timeout occurs. Additionally, the client caches the leader’s
ID after the first successful request and updates it in the
event of a failure to reach the leader.

2 PERFORMANCE
In this section, we measure the performance of RAFT.
In the first experiment, we plot the round trip time (RTT)
latency of our system against throughput as shown in
Figure 5. For this experiment, we use the server count
of 3 with a reduced election timeout of 50-100ms and
heartbeat timeout of 1ms in order to gain performance.
To vary the throughput, we put sleep in between the
"put" requests to achieve the desired throughput. In the
figure, We plot both the median as well as 99th percentile
latency. As expected, as the throughput increases, load
on the system increases which increases the latency of
the system.

Figure 6: Impact of leader crash on throughput

In another experiment, we visualize the variation of
throughput upon leader crash and re-election. To get a
better overview of this process, we increase the election
timeout to 5 - 6 secs and maintain a constant throughput
of around 1000 requests per second. In Figure 6, we plot
the running average of the throughput in a window of 0.1
sec (as against 1 sec window shown in the presentation).
We also let the system achieve a steady state of pro-
cessing around 1000 "put" requests per second before
recording the readings. As seen in the figure, when the
leader crashes, the system stops serving "put" requests
and the throughput drops to zero. It remains zero for the
period of re-election, which takes around 6-7 seconds.
The client request fails or receives negative acknoeledge-
ment during this period. When a new leader is elected,
the system quickly reaches back to serving around 1000
requests per second.

3 MEMBERSHIP CHANGE
PROTOCOL

In our project, we have implemented a membership
change protocol as shown in fig 7. The current implemen-
tation only supports member addition and not member
removal.

As shown in fig 7, member addition system works as
follows:

(1) New Machine puts an add new member request
to the leader.

(2) Leader stops accepting put requests from the
client.

3



Figure 7: Membership Change Protocol

(3) Leader inserts two special entries SP1 and SP2
in it’s log.

(4) Follower threads in the leader sync the SP1 first,
and after getting majority for SP1 they sync SP2.

(5) On receiving majority follower thread updates
the last committed index.

(6) The sync thread, on the increase in the last com-
mitted index, sees if SP2 was just committed,
it will increase the machine count in the leader.
Additionally, followers will increment their ma-
chine count on commit of SP1.

(7) Leader replies to the new machine to join the
cluster

(8) Leader steps down, and a new election happens.

Figure 8: Why two entries?

In the above procedure, we use two special entries SP1
and SP2 rather than just a single entry. Fig 8 shows why

this is necessary. If we only use one special entry, there
is a possibility that SP1 gets committed in the leader but
not in the followers. Due to SP1’s commit, the leader
will increase its machine count, but if the leader fails at
this point and one of the followers with uncommitted
SP1 is elected. Then we would elect a new leader with
an older machine count even though the new machine
has been sent an acknowledgment to join.

4 TESTING CORRECTNESS
Testing for correctness is hard in Raft. There are many
edge cases, and it is hard to test them by hand. So to au-
tomate the testing, inspired by Netflix’s Chaos Monkey
project, we wrote our random partitioner. With the help
of Linux’s iptables command, we create a virtual fire-
wall to self-isolate the node. This way, this node will be
partitioned from the rest of the system. After every few
seconds, the tool randomly decides (with some probabil-
ity passed as a parameter) whether to partition the node
or not. In this way, we designed a randomized testing
environment where each raft node runs this tool (which
we call gracious monkey). We ran the testing using this
tool and showed that our system works properly (i.e.,
the logs match on all the machines at the end) when the
time limits are in the order of seconds. For smaller time
limits, we sometimes face some issues.

Additionally, we did extensive manual testing for
many possible different cases. We tested cases like leader
crash, follower crash, and network partition, among
many others. And while programming the system, we
used a fail-fast programming style with many assert
statements to check for basic properties like the last
commit index should never decrease, committed indexes
should match, during state transition we can’t jump from
follower to leader directly, etc.

5 TAKEAWAYS
5.0.1 Hard crashes can lead to metadata corrup-
tion. In our system, many of the atomic metadata up-
dates change multiple files. Due to this behavior, a hard
crash in between this atomic update may leave some files
in an incorrect state as their metadata was not updated.
Additionally, if such a system restarts, it can propagate
incorrect metadata to the rest of the system too. This
propagation can lead to the whole system’s corruption.
To handle this, we can design the system using a single
file atomic update or transactions for file updates. This

4



way, it would be possible to revert the file updates if the
transaction did not finish properly.

5.0.2 Testing Correctness for Raft is hard. As dis-
cussed in the previous section, Raft has many edge cases
possible, and testing them manually is impossible. Man-
ual testing with human responsiveness is not feasible for
a millisecond or lower time scales. So this inspired us to
design the automated randomized testing as discussed in
the previous section. Lastly, we sometimes saw GRPC
getting stuck when we did random partitioning using
Linux’s iptables command. So there could be a bug in
the GRPC code too.

5.0.3 Polling based systems are easier to de-
sign. In our design approach, we have used a polling-
based system instead of an event-triggered-based one.
Although polling-based systems can be inefficient com-
pared to the event-based system, Raft only has a small
number of threads, mainly in the leader machine, so this
should not have a considerable performance impact. And
the significant benefit we get from a polling-based sys-
tem is lesser deadlock possibilities and lock contention,
which can help improve performance and correctness.

5


	1 Wisc AFS Design
	2 Performance
	3 Membership Change Protocol
	4 Testing Correctness
	5 Takeaways

