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Key Design Decisions

Replicated key value database is designed using Raft.

® Entire system is polling based (no signalling in-between threads). Threads poll and update
shared (persistent) states and act based on their values. States (including persistent metadata)
are updated atomically (using locks and atomic instructions).

® Log entries are lazily synced with followers (separate follower thread for each follower
performs log sync).

e C(Client uses a token system to track “put” requests (always served by the leader).

Election procedure is modified to ensure candidate with most updated log wins.
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Leader Design (continued)

Client requests are received by the GRPC server. “get” requests are served directly from that
thread, and the “put” requests are queued in a producer-consumer queue.
e Separate consumer thread picks entries from the queue and write it to the leader’s log

Each follower machine has a separate syncing thread which polls on log and pick entries as

they arrive. Additionally they also update the majority bits.

e Whichever follower syncing thread received majority for that entry updates the last commit
index.

e State sync thread polls on last commit index and apply committed entries to LevelDB, & also
send +ve acks to the client.

e Lastly, leader’s GRPC server listens for higher term RPCs from other machines and steps down

if received.




Follower Design
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Election Procedure

System follows the standard raft election

procedure, where each machine can start a
new election after election timeout and Leader 1 1 2 22| 2|2
request votes

® Inrequest vote RPC, we check last log term
and log length as expected in standard Raft Follower 1 1 1 2 12 (2|2 |2
e Additionally in our system, the candidate

steps down if any vote is denied (even if Follower 2 1 1 2 2

majority is received) Uncommitted
Entries

e This design is aimed to minimize the
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overwrites and thus reduce -ve acks send to

the client
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Client Token System

/

e Steps for client contacting the Raft Servers:

1. Client sends the request to the leader. L

F

F

2. Leader acknowledges the receipt of the

response (may fail if leader queue is full).

System

e Client API provides both blocking and non-blocking
put requests (blocked until ack-ed or timeout).

e Client caches leader ID after first successful request
and updates it on failure to reach leader.
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3. Client receives +ve/-ve acknowledgement at
some time in future for “put” requests.
e ‘“get” requests are responded successfully only if
leader has at least one entry of it’s term committed. @ @
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Demo - normal operation



https://docs.google.com/file/d/13So2uKiJY3QVi-77MngY5E2e5EIJbTz9/preview

Demo - leader crash



https://docs.google.com/file/d/1BiAGfc0nK2VmC9owpZwaj2T92KBWZlHy/preview

Demo - follower crash



https://docs.google.com/file/d/1psd1vWSqYa6dnC1oDmKK6ajrYqkjKPZY/preview

Performance:
Throughput vs Latency
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Membership Change Protocol

1. New machine sends a request to the |l /

leader to join the raft system. E; j| '@ @\ . Leader RPC
2. Leader stops accepting new client “put” e | | thread .
“" ”n H u |pe R
requests. “get” requests continue. cigats: | | LevelDB Sync
3 Lead . il iesin the | || Thread
. eader writes two special entries in the log | : PersisiBil Siomee
(SP1 & SP2) with new server count. : | 0 @)
4. Leader tries to replicates SP1 and SP2. |l R K
: . : Foll :
5. Leader waits for majority of SP2 and : : S f Tﬁrgﬂ :
notifies SP1 is committed. | : k Contoller W ERUTSSSUTOIIIII ——
. . |
6. Lea'de'r increments machlhe count on 0 o EI
majority of SP2 (follower increments when v
they commit SP1). New MY
. SIS
7. Send +ve ack to new machine to start raft.
Leader steps down for re-election. Follower Server 1 Follower Server 2




Why two special entries??

Proof by fallacy: Machine Machine Machine
1. Leader replicates SP1 among majority of Count 4 Count 3 Count 3
followers and commits SP1
2. Leader increments its own machine
Leader

count.

3. Leader acknowledges new machine and
the new machine starts as a follower. Follower Server 1 Follower Server 2

4. Leader crashes or gets into network

partition.

5. Anyfollower gets re-electedasa3 N\, __.--7 __L--"7T
machine system although the new .
machine has already joined.

Yay !! | joined




Demo - membership change
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https://docs.google.com/file/d/1ZvYvIgMX7h3qUBtdhAuOm0-mrWeZA6KY/preview

Testing Correctness : Gracious Monkey

e Designed a random network partitioning system (inspired from Netflix’s Chaos Monkey).
o  Uses ‘iptables’ linux command to create self network isolation (drops all incoming and outgoing
packets), something similar to Firewall.
o  With some probability decides whether to apply/keep the partition or withdraw it.
o  Works successfully for gracious time limits (all time limits in order of seconds).
e Adopted fail-fast programming style and did manual testing for cases like:
o Leader Crash (leading to re-election of new leader).
o  Follower Crash (can sync back with the leader when re-started).
o  Network Partitions for both the leader and followers.
m Leader in network partition leads to re-election among followers. When back, the raft
system adopts the old leader as a follower.
m Follower in network partition can detect absence of heartbeat and enter election phase.
When back, other servers increment term and participate in new election.






https://docs.google.com/file/d/1ydcbNimy-QDSGxBLe8tZsXGq05uRJ-H7/preview

Takeaways!!

e Hard crashes can lead to metadata corruption:
o Updates to multiple persistent files need to be atomic (similar to what is shown in the
Alice paper). Hard crashes can lead to file corruption leave inconsistencies within
metadata.
o Inconsistent metadata can later be propagated across the raft system (similar to
“Redundancy Does not imply fault tolerance” paper discussed in class).
e Polling based systems are easier to design than event-based systems:
o  Conditional variables in event-based systems can potentially lead to deadlocks.
o  Programming polling based system is easier with locks and atomic instructions.
e Testing Correctness for Raft is hard:
O  There are many edges and it is not possible to cover them all.
o  Manual testing is not possible at millisecond time scales (human responsiveness).
o  Sometimes GRPC can stall depending on when network partition happens.




