
WiscAFS
Aadi Swadipto Mondal Mohil Patel Rahul Uday Chakwate

Project Group 1/8
1 WISC AFS DESIGN

Figure 1: Basic Design

1.0.1 Key Design Principles. Figure 1 describes the
basic design of WiscAFS. The following points describe
the key design principles of WiscAFS.

(1) The server does not maintain any non-persistent
state. This is a well-thought decision to aid in
server crash consistency.

(2) We use the last modified timestamp of files to
track when they are updated. Clients completely
rely on server timestamps to track such updates.
This relieves us from the assumption that server
and client clocks are synchronized.

(3) Client cache can store copies of files in the server.
A file in the client cache can have three states:
(a) The file can be absent in the cache.
(b) The file is marked temporary (having exten-

sion .fusetmp) which denotes that the file
is currently open by one or more processes
in the client machine.

(c) The file is marked permanent (having ex-
tension .fuseper) which denotes that no
process has the file currently opened in the
client machine.

We assume that files in our file system don’t
have these two extensions. Files in the cache

Figure 2: Open Protocol

are stored in the format <filename>.<server-
timestamp>.<extension>. The server-timestamp
is the last-modified time of the file last known
to the client. This gets updated only when the
client tries to open or close the file. Note that
the server-timestamp can be stale if multiple
clients are accessing the same file.

(4) Client is not stateless. The client tracks open
files and maintains particularly three states: file-
descriptor when first opened, number of times
the file is simultaneously opened (open is called
multiple times for the same file before calling
close), and dirty bit of the file (whether the file
has ever been written since first open).

1.0.2 Open Protocol. The open protocol, as shown
in figure 2, has the following steps.

(1) Open call in client first tries to open the file in
server with the exact same flags passed by the
application (in client). If it fails, we check if the
error code is "File not found", in that case, we
remove any cache copies if present.

(2) On a successful opening in the server, we look
for the state of the file in the cache.
(a) In case the file is already opened, we up-

date the client state and return the same
file descriptor. Our goal is to provide first-
open-to-last-close consistency. If one file



Figure 3: Close Protocol

is opened multiple times (without close), we
update the count of times the file is opened.
the FUSE process in the client maintains
only one file descriptor for such simultane-
ous opening of the same file.

(b) In case the file is not present in the cache,
the file is fetched from the server via gRPC
streams. After that, the file is marked as tem-
porary as described previously. Open RPC
also fetches the last modified timestamp of
the file which is recorded with the filename
in the client cache.

(c) In case the file is present in the cache, we
fetch the last modified timestamp from the
server and compare it with the value recorded
in the client cache. If we see that the file in
the client cache is stale (the file has been up-
dated in the server since the last close in the
client), we simply delete the file and act as
if the file was absent in the client cache. If
the client cache is not stale, we simply mark
the file temporary as described previously.

(3) If the file was not previously opened, we add a
new entry in the client state. If the file is ever
written later, the client state is updated to mark
the file dirty.

1.0.3 Close Protocol. The close protocol, as shown
in figure 3, has the following steps.

(1) If the file was opened simultaneously, we simply
update the client state to reflect that close was

Figure 4: Close Wait Protocol

called. If this is not the last close, nothing more
is done.

(2) If the file was unlinked in opened state, we sim-
ply close the file on client and return success.

(3) If this is the last close, the dirty bit is checked for.
In case the file is dirty, we use gRPC streaming
to send the file to the server. The server initially
writes the file to a temporary file. After the server
receives the entire file, it renames the temporary
file (assumed atomic) to the actual filename. The
server sends a success code on completion.

(4) Upon receiving the success code from the server,
the client marks the file as permanent as de-
scribed previously. Similar to open RPC, close
RPC also fetches the last modified timestamp
from the server, which is updated is recorded
with the filename in the client cache.

1.0.4 Close Wait Protocol. Files may be big and take
time to send from the client to the server. It is possible
that another client tries to close the file when one client is
interacting with the server during file-close. A scenario
with the detailed steps is shown in figure 4 where client
2 requests file-close when client 1 is interacting with the
server. In this scenario, when client 2 sends a file-close
request to the server (step 2), the server responds with
a wait message (step 3). Client 2 randomly waits using

2



an exponential back-off algorithm (fails after 16 retries)
and re-sends file-close requests after waiting (step 6). If
the server is not interacting with any other client for that
particular file, the server serves the request for client 2.

1.0.5 Crash Consistent Design. On client crash and
subsequent restart, the client clears all files in the cache
marked temporary (essentially the opened files during
the crash). Since the client state is only composed of
opened files and their file descriptors, it is justifiable to
lose them as they are only local to the FUSE process.
The client can lazily fetch files lost during a crash from
the server as and when required. Files that were closed
(marked as permanent) remain in the cache and are avail-
able for use after the client restarts. This ensures that the
file is never left in a corrupted state in the client cache.

The server is inherently stateless except when the
client is sending the updated file to the server (the server
initially writes in a temporary file and then performs a
rename operation) during file-close. Similar to the client,
the server deletes the temporary files in an event of a
crash. The client can send the file again if the server
crashed in between. This ensures that the file is never
left in a corrupted state on the server. After the crash,
the old version of the file is available for use.

1.0.6 Unlink. Unlink forwards call to the server (deletes
from the cache if successful). We also track files that
were deleted while the file was open. To comply with
POSIX semantics, such files are ignored upon close as
described previously in the close protocol.

1.0.7 Utimens. There are primarily two major chal-
lenges:

(1) We depend on the monotonic increase of the last
modified time for server files.

(2) We cannot allow the client time to overwrite
server time (this happens when files are moved
from outside the mount point directory).

To counter these challenges, we ensure that last modified
time is never set to old times for a newly created file.
For an already existing file, the maximum of the current
last modified time and value given by the application
for the new value, ensuring monotonic increase of time.
Finally, utimens is never directed to the server.

This can be a potential issue if applications depend on
last modified time of files when files are moved across
directories within the WiscAFS mount point or from
outside to WiscAFS mount point. The server will not

see any updates as a result of utimens since it is never
destined to go to the server.

1.0.8 GetAttr & GetXAttr. Write on opened files (di-
rected to client cache copy) may change the file size.
GetAttr and GetXAttr fetch all information from the
server via RPC, except for the file size which is over-
written to the client cache file size.

1.0.9 File Permissions. Files are always created with
all permissions (777). This is to handle complex permis-
sion issues like writing only for the first time, read-only
thereafter. Operations related to file permissions, specifi-
cally chown and chmod are NO-OP operations.

1.0.10 Directories. All directory-related operations
are forwarded to the server. Directories in the cache are
created when the file is opened in client. Directories
are deleted when empty directories are left after the file
unlinks (or File Not Found error codes).

2 RESULTS
2.0.1 Filebench. Table 1 shows the results of filebench
across wiscAFS and unreliablefs. In the results, mongo
is a macro benchmark and all the other benchmarks are
microbenchmarks.

There are two interesting observations between unre-
liablefs and wiscAFS. First is all the operations where
we see similar latency and throughput numbers for both
filesystems. These operations are readfile, writefile and
sync (fsync) operations. We expect this to happen be-
cause in wiscAFS these operations execute directly on
local cache copy without any interaction with the server,
so they show similar measurements as unreliablefs. Ad-
ditionally, note that in seqwrite’s writefile wiscAFS is
showing slightly worse performance than unreliablefs.
In the write operation, although it is entirely on the local
cache file, we update the client state to track things like
dirty bit, etc in wiscAFS. This could be the reason for
the slower performance.

In contrast, the second is those operations that show a
considerable degradation in measurements for wiscAFS
compared to unreliablefs. This includes operations like
statfile, closefile, openfile, deletefile, etc. All these op-
erations involve server interaction in wiscAFS, which
significantly degrades the performance compared to un-
reliablefs.

Lastly, there are a few discrepancies that we could not
understand. In mongo benchmark readfile1 is showing

3



Workloads Ops Tput(mb/s) Lat(ms/ops) Tput(mb/s) Lat(ms/ops)
wiscAFS wiscAFS unreliablefs unreliablefs

create appendfile 118.883 8.367 161.48 6.166
createfiles closefile 0 4.294 0 0.031

writefile 0.047 1.796 0.489 0.063
createfile 0 14.639 0 0.112

createrand sync 0 14.183 0 14.449
appendfile 76.194 5.057 101.441 3.41

delete deletefile 0 78.713 0 1.328
readrand readfile 63.991 0.015 64.991 0.014
writerand writefile 0.794 2.441 4.879 0.393
seqread seqreadfile 5459.415 0.181 5420.266 0.183
seqwrite writefile 120.184 8.29 157.779 6.317

stat statfile 0 66.022 0 0.026
writefsync sync 0 22.725 0 22.855

appendfile 5.556 1.379 69.082 0.087
mongo deletefile1 0 6.153 0 0.135

closefile2 0 0.037 0 0.016
readfile1 0.703 0.112 39.061 0.049
openfile2 0 8.861 0 0.033
closefile1 0 0.042 0 0.016

appendfile1 0.333 1.637 19.826 0.068
openfile1 0 5.28 0 0.035

Table 1: Filebench results

bad performance in wiscAFS & in createfiles benchmark
writefile operation is bad for wiscAFS. We suspect that
this could be due to workload properties (things like
small writes, small reads, files not in local cache during
read, etc.).

2.0.2 xv6 and Parallel-Build. Both xv6 and parallel-
build workloads work. The videos for the same are in
the presentation slides. For xv6 we are able to build and
run xv6 on top of wiscAFS. And for parallel-build we
are able to build leveldb. We also see improvement in
build time as we increase the number of threads

3 EVALUATION
3.0.1 Client Cache Consistency. Along with the
basic cache consistency test (test 1) provided to us, we
implemented 3 more tests to evaluate wiscAFS as shown
in the slides. In test 2, client B modifies a file which is
then modified by client A. Upon reopening the file, we
assert that client B should see the updated contents and
not the old contents in its cache. In test 3, we make sure

that a file is not flushed to the server on a write call but
only on a close file call. In test 4, we let both clients run
asynchronously for many iterations and let them open,
read or modify the file in a probabilistic way and close
the file so that we are not certain of the cache state at
any point in time. Finally, we evaluate if the file on the
server is in a consistent state and not a mixed state.

3.0.2 Client Crash consistency. We designed tests
to evaluate the crash consistency of wiscAFS. In the
client crash test, client A opened and modified the file,
but crashed before closing the file and did not flush its
updates. Upon reboot, we verify that the file is re-fetched
from the server during the open call and client A sees
the server content.

Note on server crash. We observed that when the
server crashes and reboots, gRPC is facing issues re-
initializing the communication with the server since the
gRPC channel is broken between the server and the
client. Thus, we also had to kill the client and let it
reboot to establish a connection with the server.

4



Figure 5: Option A: Who is the winner?

3.0.3 Option A: Who is the winner? In this test, we
evaluated the impact of network randomness on Wis-
cAFS as shown in figure 5. We have two clients A and B
opening, modifying, and closing a file on the server. We
observe that there exists a fixed average delay between
the arrivals of the two requests on the server when we
synchronize the clients. We then inject a variable delay
with a fixed probability of 50% in the flush call of client
B. This variable delay will impact the probability of
client B winning as described by the following analyti-
cal model. This is a good analyses of random delays that
is usually introduced due to randomness in networks.

when fixed delay >> variable delay

𝑝 (B winning) = 0.5

since any client can randomly be a winner

when fixed delay << variable delay

𝑝 (B winning) = 𝑝 (delay in A) ∗ 𝑝 (B winning)
+𝑝 (no delay in A) ∗ 𝑝 (B winning)

= 0.5 ∗ 1 + 0.5 ∗ 0.5 = 0.75
We intend to study this transition of probability through

experimentation. This transition is shown in Figure 6
which plots probability against variable delay (in ms).
The average arrival time difference between client A and
B calls is plotted in Figure 7.

Figure 6: Probability of Client B winning. X-axis is
the delay in milliseconds, y-axis gives the probability.

Figure 7: Average time difference (in ms) between the
arrival of flush calls of client A and client B plotted
against delay (in ms).

4 DURABILITY
For durability we designed errinj-alice-delay and errinj-
alice-reorder. In errinj-alice-delay, when the error is
injected we delay the operation by 1 filesystem call
duration, i.e. it will be executed when the next fs call
happens. Similar in the errinj-alice-reorder we execute
the operation after running the next filesystem call. Both
are implemented using a simple queue storing the error-
injected operation.

Figure 8 shows the workload that we designed to
show the potential durability issue in crash conditions.
This workload is inspired by the Git application issue
found in the ALICE paper. In the workload designed,
we are adding errinj-alice-delay in the rename operation
(shown in red). From the client application’s perspective,
rename shows success so it won’t be worried about its

5



Figure 8: Durability Workload

state. But due to delay if there is a crash after rename
operation it is possible that the client will see a corrupted
state on the disk because the operation never really got
pushed to persistent storage.

5 TAKEAWAYS
5.0.1 Filesystem & POSIX Semantics.

• close() (fuse_release) operation executes lazily
and ignores the return error code.

• POSIX semantics allow for an open file to be
unlinked. wiscAFS needs to handle this scenario
while doing the close operation.

• In mv command, it creates a new file and uses
utimens to update the last modified time in past.
If the designed system assumes a monotonic
increase in time, this can cause issues.

5.0.2 Permissions. POSIX semantics allow create
call to open a file in rdwr mode for the first time and
change its permission to read-only after it is closed.
We tried to emulate this operation but it proved hard
as we wanted to keep the server stateless. Thus in our
implementation, everything has rwx for all the files.

5.0.3 Consistency. Because of variable network la-
tency, the last writer wins semantics in AFS should only
be seen when the server receives the request. We cannot
see it from the client’s perspective. Due to network la-
tency even if client B’s request was sent later in (real)
time, client A can be the winner if its request arrived the
last.

5.0.4 Durability. Applications may assume filesystem
persistence properties which may not be true due to
added optimizations. This can lead to data corruption in
potential crash conditions.

5.0.5 Integrating large C & C++ code. Integrating
large C & C++ codebases can be complicated. It took us
few days just to get a basic integration of unreliablefs
(C) with grpc (C++) and compile it end-to-end.

6


	1 Wisc AFS Design
	2 Results
	3 Evaluation
	4 Durability
	5 Takeaways

