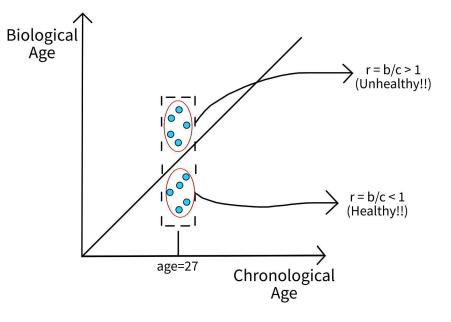
Modeling biological age speedup factor (*bio^{age}/chron^{age}*) as random variable to predict death

Mohil Patel, Sruthi Ganesh, Lipika Garg

Intuition for Modeling



- → Define, r = bio^{age}/chron^{age}
- → For a given age, we have healthy and unhealthy people
 - $r_{age=27} > 1$, implies unhealthy
 - $r_{age=27}^{uge=27}$ < 1, implies healthy
- → Intuitively we can expect,
 - $E[r_{age=27}] = 1$, for that age
- → That is r can be seen a random variable, with mean 1
- → We can easily extend the argument to include all ages, so

♦ E[r] = 1

Mathematical Model and Assumption-1

Mathematical Model:

 \rightarrow Define,

• $r = bio^{age}/chron^{age}$

 \rightarrow Model *r* as a gaussian random variable:

• $r = N(1, \sigma^2)$

Assumption-1:

→ Only 1 CT data available each patient, so we can calculate only:

♦ r^{at_CT}

- → To calculate death age, we need: • r^{at_death}
- → Assumption, the value of r stays constant, i.e.:

 $\bullet r^{at_{CT}} = r^{at_{death}}$

Note: This assumption can be relaxed if we have more CT data for each patient. In that case we can model: r as a *random process*. Or treat r as *time series* & predict r^{at_death} .

Assumption-2

- → To calculate $chron^{age_at_death}$ using r, we need $bio^{age_at_death}$
- → Assumption:

bio^{age_at_death} = constant & same for everyone

- \rightarrow How to calculate *bio*^{age_at_death}?
 - ◆ 549 points in dataset with *chron^{age_at_death}* available
 - Using, $E[r^{at_death}] = 1$

$$\Sigma(bio^{age_at_death} / chron^{age_at_death}) / N = 1$$

constant]

bio^{age_at_death} = harmonic_mean(chron^{age_at_death})

→ Calculating from the dataset we get:

Loss Function

- → How to identify whether our predictions of bio^{age_at_death} are good or bad?
- → Loss Function (Attempt-1):

•
$$L = (1 - E[r])^2$$

• $L = (1 - (\Sigma_{all \ datapoint}(r)/N))^2$

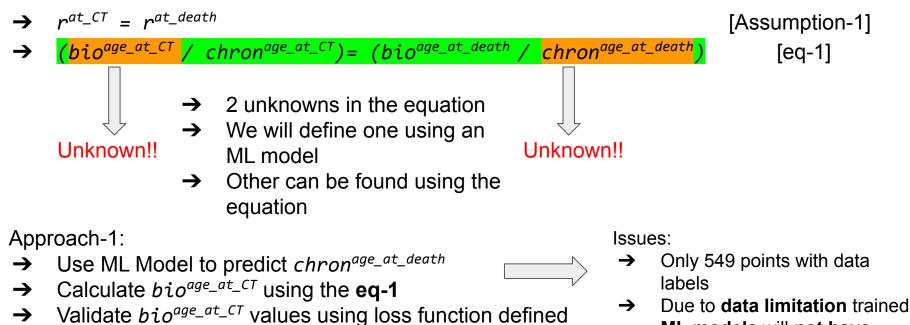
Issues:

- → Some ages can have r > 1, and others may have r < 1</p>
- → But averaging across all ages cancel things out
- → Optimizing across all ages

Advantages:

- → Ensuring each age will have $E[r_{age}] = 1$
- → No across age averaging

Approaches



ML models will not have

good accuracy

earlier (reflects how good the model is)

Approaches (Continued)

Approach-2 (better approach):

- → Define bio^{age_at_CT} using ML model (we have tried different models and will discuss them in next slides)
- → Validate the goodness of the model using the loss function we defined earlier
- → Get *chron^{age_at_death}* using **eq-1**, i.e.:
 - $chron^{age_at_death} = (bio^{age_at_death} \times chron^{age_at_CT}) / bio^{age_at_CT}$

Advantages of using approach-2:

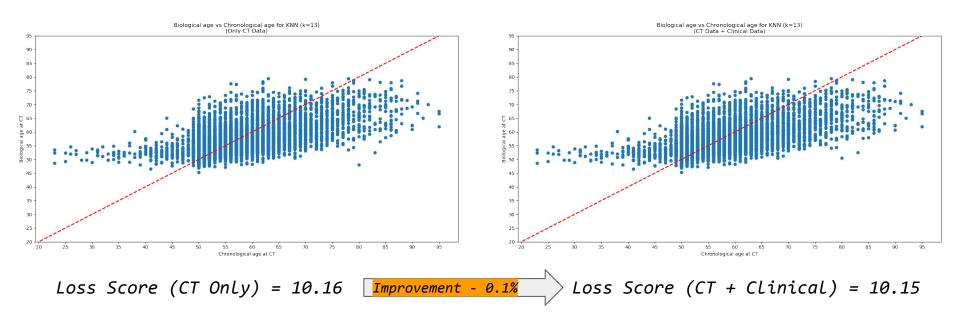
- → Have 9223 data points to work with
- → Can define $bio^{age_at_CT}$ in many different ways (Be Creative!!)

Note: Due to time constraints, we will only discuss **approach-2** in this presentation. For **approach-1** results please refer to the **report**

Model-1: KNN

Key Idea: Nearest Neighbors using CT (& Clinical Data) should have similar bio^{age_at_CT}

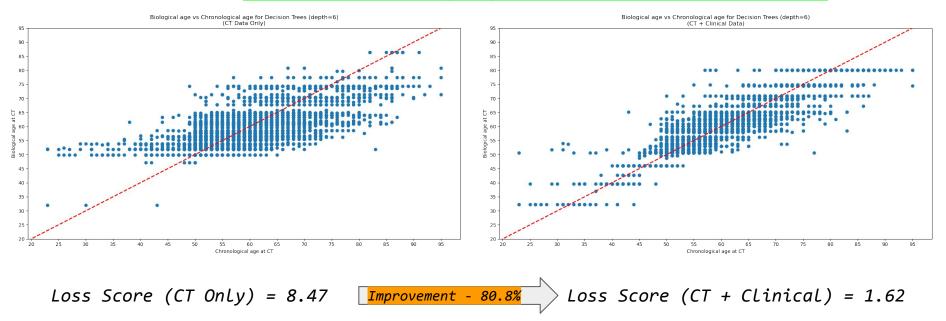
→ E[r] = 1 [From Modeling]
→ $E[bio^{age_at_CT}/chron^{age_at_CT}] = 1$ [Using $bio^{age_at_CT}$ as constant from key idea]
→ $bio^{age_at_CT} = E[chron^{age_at_CT}] \rightarrow Take average age of k-nearest neighbors, treat as <math>bio^{age_at_CT}$



Model-2: Regression Decision Tree

Key Idea: Similar as KNN. *bio^{age_at_CT}* is same if similar CT values.

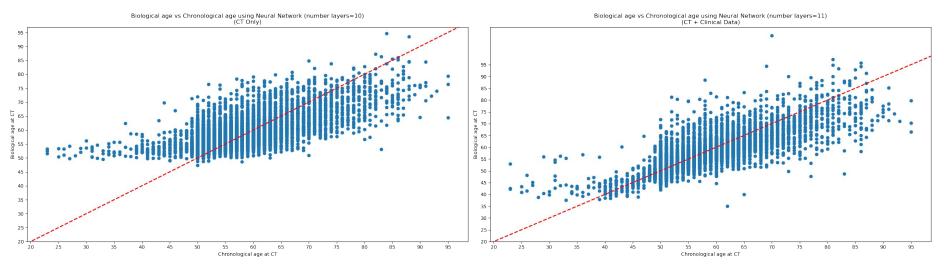
- → Similar CT values \rightarrow Same Leaf Node in Decision Tree
- → That implies, Patients with same $bio^{age_at_CT} \rightarrow$ Same Leaf Node
- \rightarrow Thus we can treat, **bio**^{age_at_CT} = Result_of_Regression_Decision_Tree(CT_Values)



Model-3: Neural Network

Key Idea: Similar as last 2 models:

- \rightarrow For a given CT Values \rightarrow find characteristics age
- → We treat that age as bio^{age_at_CT} = Result_of_Neural_Network(CT_Values)



Loss Score (CT Only) = 10.29

Improvement - 55.4%

Loss Score (CT + Clinical) = 4.59

Alternative idea to define *bio*^{age_at_CT}

Till now, the models we discussed are based on following fundamental idea:

→ For given CT values → find characteristics age → that characteristic age is $bio^{age_at_CT}$

Why don't we reverse the approach?

→ For a given age \rightarrow find characteristic CT values \rightarrow Make a lookup table for all the ages

For any new CT value:

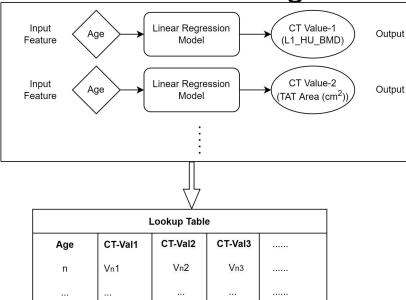
- → Use the lookup table and find the nearest point
- → The age corresponding to point is defined as bio^{age_at_CT}

The fundamental idea that we want to cover is:

→ For every age, there is a characteristic CT value which defines that age

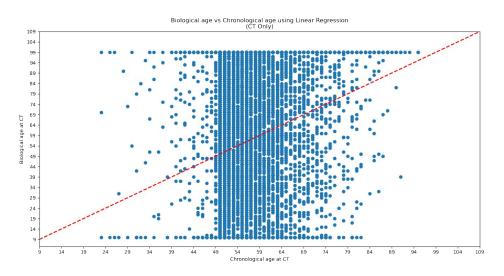
Age	Characteristic CT Value - 1	Characteristic CT Value - 2	 Characteristic CT Value - k
1	v ₁ 1	v ₁ 2	 v ₁ k
2	v ₂ 1	v ₂ 2	 v ₂ k
100	v ₁₀₀ 1	v ₁₀₀ 2	 v ₁₀₀ k

Model-4: Linear Regression



Lookup Table:

- → Has characteristic CT values for all the ages
- → New CT Value → Find nearest point in lookup table → Define that age as bio^{age_at_CT}



Loss Score (CT Only) = 20.36

Loss score of the above model is not too bad. But clearly the plot above shows that the model is bad. This leads to identifying some issues:

- → Picking single value from the lookup table might not be the best way (need some different approach)
- Loss score does not capture variance as optimization goal

Conclusion

Takeaways:

- \rightarrow defined a mathematical modeling for $r = bio^{age}/chron^{age}$
- → defined a loss function to access goodness of fit: $L = \sum_{aae} [(1 E[r_{aae}])^2]$
- → implemented multiple ML models and accessed their accuracy
- → regression decision trees are showing good results
- → adding clinical data is improving results for all the ML models

Future Works:

- → incorporate variance in the loss function to make optimization goal better (previous slide!!)
- → currently we assume: $r^{at_{CT}} = r^{at_{death}}$, because only 1 CT value available. Extend this to a better mathematical model if more than 1 CT values available for each patients
 - r as random process
 - treating *r* as a *time* series prediction
- → make an estimator for variance (in $r = N(1, \sigma^2)$) and try to do confidence interval estimation