Ensembling and Data Augmentation for QA

Agam Dwivedi
dwivedi7@wisc.edu

1 Introduction

Question Answering (QA) in artificial intelligence
(AI) focuses on developing algorithms and sys-
tems that can answer questions posed in natural
language. The field of QA has significant practical
applications, including the development of chatbots
that can answer customer queries in an automated
and conversational manner. ChatGPT is a language
model that uses deep learning to generate responses
to user input, and QA is a critical component of its
functionality. Machine comprehension, another ap-
plication of QA, involves training machines to read
and understand natural language texts and then an-
swer questions about them. Overall, the field of QA
has wide-ranging applications and is essential for
creating intelligent and conversational Al systems.

Ensembling, oversampling, and question genera-
tion have been widely used in machine learning to
improve model performance. In our work, we aim
to adapt these techniques specifically for the task
of Question Answering (QA) using the Stanford
Question Answering Dataset (SQuAD) (Rajpurkar
et al., 2018). SQuAD is unique in itself, as the
answer lies in the context. This allows the model
to focus on understanding the context rather than
predicting the next word. We also plan to leverage
modern Language Models (LLMs) to produce ques-
tions and assess their effect on the performance of
Question Answering (QA) tasks.

Previous studies have explored the use of ensem-
bling methods, question generation, and other data
augmentation techniques in QA tasks. However,
none of them has comprehensively analyzed these
approaches, specifically on the SQuAD dataset.
Our research focuses on evaluating and comparing
various data augmentation methods and ensemble
models to identify the most effective techniques for
enhancing model performance.

The upcoming sections will present previous re-
search related to Question Answering tasks. We

Mohil Patel
mpatel48@wisc.edu

Rahul Chakwate
chakwate@wisc.edu

will then introduce the SQuAD dataset and dis-
cuss the necessary pre-processing steps to prepare
it for training. Afterward, we will describe various
baseline models and their respective fine-tuning
approaches. We will then detail our ensemble tech-
nique to enhance model performance, followed by
an oversampling approach to address the class im-
balance in the dataset. Then, we will cover our
Question Generation model, which utilizes LLMs
to generate questions. In the final section, we con-
clude our project and present the individual contri-
butions made by each team member.

2 Background

Question Answering is an extensively studied task
in the field of NLP. In this section, we cover some
background works in this field. We cover some
Question Answering models, using ensemble tech-
niques in QA and Question Generation for question-
answering tasks.

BiDAF (Bi-Directional Attention Flow) (Seo
et al., 2018) network is an LSTM-based model
with the attention mechanism specifically trained
for Question Answering. Compared to its prede-
cessors, it uses bi-directional attention, calculated
from query-to-context and context-to-query, to im-
prove performance. It also calculates attention for
every time step, rather than summarizing the whole
query with a single fixed vector, allowing it to cap-
ture context better. Attention vectors are passed
through the LSTM layer to generate results for the
Question Answering task

As the name suggests, BERT (Bidirectional En-
coder Representations from Transformers) (De-
vlin et al., 2019) is a Transformer-based language
model. Language model pretraining is shown to be
effective for many downstream NLP tasks. Models
like GPT-2 (Radford et al., 2019) only use Trans-
former decoders and pre-trains as unidirectional
language models. This left-to-right modeling re-
stricts the representation power of pre-trained pa-

rameters for fine-tuning many downstream tasks.
Compared to that, BERT uses Transformer en-
coders and allows the model to capture bidirec-
tional context. It uses the "Masked Language
Model" (MLM) pretraining objective, in which a
random 15% of tokens are masked and used for pre-
training (unlike left-to-right training in GPT-2). It
also uses the "next sentence prediction” task for pre-
training, allowing it to get better results in Question
Answering and Natural Language Inference tasks.

Ying (2019), in his work, used ensembling to
improve performance for QA tasks. In his paper, he
used an ensemble of BIDAF+BERT on the SQuAD
dataset. The work uses a stochastic ensembling
method, where in cases when BERT and BiDAF
output disagrees, it probabilistically selects one of
them as the correct answer. The results showed an
improvement using the ensemble technique.

Now we discuss the BERT variants that we con-
sidered for ensemble, specifically RoBERTa, Al-
BERT and DistilBERT. The BERT language model
has areas that could benefit from improvement, and
ROBERTa (Liu et al., 2019) is an optimized ver-
sion developed by Facebook. Modifications made
to ROBERTa include training the model for longer
periods with larger batches, increasing the amount
of training data, removing the next sentence predic-
tion objective, training on longer sequences, and
using dynamic masking instead of static masking
to create more varied training data. ALBERT (Lan
et al., 2020) has architecture is similar to BERT,
using encoder layers with GELU activation func-
tions. However, there are three key modifications
unique to ALBERT. Firstly, the input-level embed-
ding and hidden-level embedding were separated
by factorizing the embedding matrix, resulting in
an 80% reduction in parameters with a minor drop
in performance. Secondly, cross-layer parameter
sharing was introduced to improve efficiency and
reduce redundancy, leading to a 70% reduction in
the overall number of parameters. Finally, AL-
BERT used a new loss called SOP (Sentence Order
Prediction) to measure inter-sentence coherence,
rather than NSP (Next Sentence Prediction) which
has the disadvantage of considering both coherence
and topic. DistilBERT (Sanh et al., 2020) is an ap-
proximate version of BERT that maintains 95% of
its performance while using only half of the param-
eters. It achieves this by eliminating token-type
embeddings and keeping only half of the layers in
the original BERT model. DistilBERT utilizes dis-

tillation, which involves approximating a large neu-
ral network (like BERT) with a smaller one. The
idea is that the full output distributions of the large
network can be approximated using the smaller net-
work once the large network has been trained. This
process is similar to posterior approximation, with
Kulback Leiber divergence being a key optimiza-
tion function used for this purpose.

Question Generation is used to generate a syn-
thetic dataset for the QA task. Alberti et al.
(2019) improve on generating synthetic question-
answering corpora by using a novel method to
generate (C, Q, A) (context, question, and answer
pairs). In their approach, they train three sepa-
rate models and use roundtrip consistency to select
high-quality pairs. For passage C, first, they train a
model to extract an answer A (step 1). Using the
generated A with passage C, in step 2, they output
the question Q using a separately trained model.
And lastly, in step 3, they generate a new answer
A’, using a question-answering model. Step 4 helps
decide whether to output the (C, Q, A) pair. Only
those pairs that output the same A and A’ are al-
lowed. This check helps ensure high quality in out-
put pairs. Overall they show that pretraining with a
synthetic dataset generated from this method leads
to better results in QA tasks on SQuAD2.0 (Ra-
jpurkar et al., 2018) and NQ datasets (Kwiatkowski
et al., 2019).

Unlike the previous approach, Lopez et al.
(2021) tried to answer Question Generation with
only one model. Many Question Generation mod-
els use multiple models and additional features like
answer awareness (Alberti et al., 2019) and extra-
linguistic features to generate questions. Lopez
et al. (2021) treat question generation as a language
modeling task in their approach. They used pre-
trained GPT-2 (Radford et al., 2019) and fine-tuned
the model with the SQuAD dataset (Rajpurkar
et al., 2018) as input data for language modeling.
Each training example has a context paragraph and
associated question(s) with a delimiter in between.
Training this way allows the model to generate
questions similar to language modeling tasks. They
tried different delimiters and input formats and
showed that the questions generated were on par
with state-of-the-art models.

3 Experimental Setup

Our objective is to ask questions about a given doc-
ument and identify the relevant answers as text

spans within the document. We will be using
pre-trained language models for our experiments,
which are not specifically trained for question an-
swering. These models will be fine-tuned on the
SQuAD dataset as a first step.

3.1 The SQuAD Dataset

The SQuAD dataset (Rajpurkar et al., 2018),
also known as the Stanford Question Answering
Dataset, is widely used as a benchmark for
retrieval-based question answering in academic
settings. The dataset includes questions posed
by crowd-workers based on Wikipedia articles,
along with the relevant context where the answers
can be found. Our models are designed to predict
the specific start and end points of the answer
within the context. The dataset comprises 87,599
training samples and 10,570 validation samples,
and includes features such as example ID, question,
context, and a set of ground-truth answers. During
training, each question has only one answer, but
during evaluation, a list of answers is provided
due to the possibility of multiple correct answers
for some ambiguous questions within a given
context. The following example shows how for a
given question and the context, there are multiple
possible answers.

Question: "Where did Super Bowl 50 take
place?”

Context: "Super Bowl 50 was an American foot-
ball game to determine the champion of the Na-
tional Football League (NFL) for the 2015 season.
The American Football Conference (AFC) cham-
pion Denver Broncos defeated the National Foot-
ball Conference (NFC) champion Carolina Pan-
thers 24—10 to earn their third Super Bowl title.
The game was played on February 7, 2016, at
Levi’s Stadium in the San Francisco Bay Area at
Santa Clara, California. As this was the 50th Super
Bowl, the league emphasized the golden anniver-
sary with various gold-themed initiatives, as well
as temporarily suspending the tradition of naming
each Super Bowl game with Roman numerals (un-
der which the game would have been known as
Super Bowl L), so that the logo could prominently
feature the Arabic numerals 50."

Answers: "Santa Clara, California”, "Levi’s
Stadium", "Levi’s Stadium in the San Francisco
Bay Area at Santa Clara, California.”

3.2 Pre-processing the dataset

To make our input data understandable for the mod-
els, we need to convert natural text into numerical
representations. To achieve this, we tokenize the
input question and context, where each word cor-
responds to one token. The models’ objective is to
predict the starting and ending tokens of the answer.
Each token has two labels, a start label, and an end
label, and the models’ task is to predict these la-
bels. As shown in Figure 1, the context is split into
tokens, and the starting and ending tokens of the
answer are marked with 1, while all other tokens
are marked with 0.

To accommodate the fixed tensor length that the
models can handle, we have limited the context
length to a maximum of 384. For longer contexts,
we divide them into multiple features, and to avoid
any incorrect splits in the middle of an answer, we
overlap the features. We then convert the ground-
truth answer locations to tokens and generate labels
that we can use to fine-tune our model.

(tets) | [(mis | [s) [te | [queston|
(ser] [the] [contewt | [s] [here |
Cang | s] [) [e | [answer |
EBY
= D e D G

Figure 1: Label Creation Process

3.3 Fine-tuning the models

The models that we are using in our experiments
are pretrained language models and not specifi-
cally designed for the Question Answering task.
To make them work for our problem, we fine-tuned
them on the SQuAD dataset after pre-processing it
as described earlier. We obtained the pretrained
base language models using the Hugging Face
API (Wolf et al., 2020) and fine-tuned them for
3 epochs using PyTorch, which took around 2-3
hours of training per model on Google Colab TPU.
The models that we fine-tuned include BERT-base,
RoBERTa-base, ALBERT-base, and DistilBERT-
base. We have made our trained models available

on the Hugging Face hub, so they can be down-
loaded and used by anyone without the need for
retraining from scratch, which saves computational
resources.

3.4 Post-processing and Evaluation

Our model produces two raw logits for each token
node in the feature vector - one for the start and the
other for the end of the answer. We need to post-
process these raw outputs to get the actual start and
end indices of the answer from the context. To ob-
tain probabilities, we applied softmax to the input
logits. We then filtered out invalid outputs, which
are [start,end] pairs where the start index is greater
than or equal to the end index. We considered only
the top n best logits from each list, where n is 20 in
our case, based on the answer length and context
size parameters. Assuming independence between
the events "The answer starts at the start index" and
"The answer ends at the end index", the probability
that the answer starts at the start index and ends at
the end index is calculated as follows.

startprop|index siart) * €ndprop[indexeng)

We calculated the probability of all valid pairs
and selected the pair with the highest probability as
the model’s predicted answer with its correspond-
ing confidence score. Then, we mapped the start
and end indices of the answer with the text from the
context. To evaluate our model on the test dataset
containing about 10,000 samples, we compared the
predicted answers with the ground-truth answers
and computed the percentage of exact matches and
the F1 score.

4 Ensemble Method

Ensembling techniques have historically proved
to be effective in improving model performance.
We believe such techniques can also be adapted to
improve the performance of individual QA models,
which we explore in our work.

4.1 Approach

We used a post-processing script to obtain a confi-
dence score for each predicted answer, which was
then used to create an ensemble. For each question-
context pair, we chose the predictions of the model
with the highest confidence score among the mod-
els considered. We based our ensemble technique
on the idea that the model would predict correct

answers with high confidence but would be less
confident for wrong answers. This is because in the
case of wrong answers, the model can be confused
between multiple answers and will predict them
with low probability.

4.2 Results

The results of the ensembling technique discussed
in the previous section are presented in Table 1.
The first ensemble (Ensemble 1) is created by
combining the base models of BERT, ALBERT,
and RoBERTa that were fine-tuned on the Squad
dataset. It was observed that Ensemble 1 doesn’t
perform any better than individual models in terms
of Exact Match and F1 score. Since this ensemble
did not improve the performance over RoOBERTa-
base, the decision was made to replace it with a
lightweight model, DistilBERT, whose individual
performance was lower than the other two. The
second ensemble (Ensemble 2) outperformed all
three individual models in terms of F1 score by
0.7% and in Exact Match by a significant 2.2%.

Next, we tried to combine different variants of
the same model, and Ensemble 3 was created by
combining the base, xlarge, and xxlarge models of
ALBERT. However, this ensemble did not improve
the performance over individual models, possibly
due to the weakness of ALBERT-base. Thus, we
removed ALBERT-base in Ensemble 4, which out-
performed the two individual models by approxi-
mately 1.4% on Exact Match and 0.6% on F1. We
then combined the ALBERT-xlarge and ALBERT-
xxlarge models with RoOBERTa models in Ensem-
bles 5 and 6, respectively. Both ensembles showed
improvements in performance, especially Ensem-
ble 6, which had the biggest improvement of ap-
proximately 2% on Exact Match and 1% on F1.

Based on our experiments and the results in Ta-
ble 1, we drew the following conclusions:

* We initially believed that an ensemble of mul-
tiple language models would always perform
better than individual models in that ensem-
ble.

* We thought that taking the maximum confi-
dence score among individual models would
result in at least the same level of performance
as the best model in the ensemble.

* However, the experiment results showed that
this is not always true. For example, in Ensem-
ble 1 and Ensemble 3, an individual model out-

Model Exact Match F1 Score
(%) (%)

BERT-base 81.15 88.58
ALBERT-base 81.94 89.70
RoBERTa-base 85.20 91.78
Ensemble 1 84.73 90.75
BERT-base 81.15 88.58
ALBERT-base 81.94 89.70
DistilBERT-base 79.57 86.92
Ensemble 2 84.12 90.41
ALBERT-base 81.94 89.70
ALBERT-xlarge 87.40 93.58
ALBERT-xxlarge 87.82 94.14
Ensemble 3 87.67 93.48
ALBERT-xlarge 87.40 93.58
ALBERT-xxlarge 87.82 94.14
Ensemble 4 89.20 94.77
ALBERT-xlarge 87.40 93.58
ALBERT-xxlarge 87.82 94.14
RoBERTa-base 85.20 91.78
Ensemble 5 89.44 94.79
ALBERT-xlarge 87.40 93.58
ALBERT-xxlarge 87.82 94.14
RoBERTa-large 87.41 93.74
Ensemble 6 89.74 95.10

Table 1: Results of ensemble performance. Each ensem-
ble is a combination of the 2 or 3 models mentioned
above it. Exact Match: Percentage of predictions that
exactly match with true answers. F1 Score: F1 metric
of the predicted v/s true answers.

performed the ensemble’s performance. This
contradicts our belief that ensemble will al-
ways improve the performance.

¢ However, in other ensembles (2, 4, 5, and 6),
the ensemble models outperformed the indi-
vidual models contributing to that ensemble.

¢ Therefore, we can conclude that the ensemble
outperforming individual models in many of
the cases but not necessarily in all of them.

* We cannot make any conclusive generaliza-
tion using our current ensembling approach.
However, there may be other ensembling tech-
niques that could lead to better improvements,
such as weighted averaging, using MLPs to
predict the weights, etc., which we plan to
investigate in the future.

5 Oversampling

In machine learning, oversampling is a technique
used to address imbalanced datasets, where one
class of data is significantly underrepresented com-
pared to the others. This imbalance can lead to
biased models that generalize poorly. Oversam-
pling involves creating synthetic examples of the
minority class by duplicating or generating new
instances. The goal of oversampling is to balance
data distribution across different classes, leading
to more accurate and representative models. It is a
widely used technique in machine learning and has
been shown to improve model performance.

5.1 Approach

Past works have shown the importance of over-
sampling in Question Answering tasks. To under-
stand the dataset characteristics better, we first did
some preliminary analysis and plotted the imbal-
ance in the SQuAD dataset. As shown in Figure
2, the dataset has a very high percentage of what’
type questions compared to the rest of the question

types.

Question type distribution

® Train (87599 samples) M Validation (10570 samples)

60%
55%
50%
45%
40%
35%
30%
25%
20%
15%
10%

% of Dataset Size

G 0
what who where when]GY/hqyZ§ how which ‘%&B

Question Type

Figure 2: Distribution of Question Types in SQuAD

Based on this understanding of the dataset char-
acteristics, we designed the approach to oversample
the underrepresented question types by varying the
ratio of the max question type to the min question
type. The hope is that oversampling will reduce the
trained model’s bias and improve performance.

5.2 Results

Figure 3 shows the results that we got from over-
sampling. As we can see, increasing the balancing
ratio does not significantly increase the score. And
as we got to higher oversampling, we saw a de-
crease in the performance.

To understand why we did not see the improve-
ment we hoped for, we plotted the question type

Oversampling: Balancing Dataset
® F1 ® Exact Match

90.00

88.58

88.79 88.61
87.30
85.00
§0.00 81.15 81.49 80.05
79.50
75.00
70.00
10:1 51 251

Base (~50:1)

Score

max question type : min question type

Figure 3: Oversampling underrepresented question
types

distribution for incorrect predictions for the base
model without any oversampling. As shown in
Figure 3, the distribution of wrong predictions is
almost the same as the train and validation split.
This similarity implies that each question type gets
the same percentage of incorrect questions. Thus,
the base model, even without any oversampling, is
learning each question type equally well. Therefore
adding extra samples for underrepresented question
types is not helping much.

Question type distribution

® Train (87599 samples) M Validation (10570 samples) ™ Incorrect Predictions (2113 samples)

60%
55%
50%
45%
40%
35%

0%

% of Dataset Size

1 ZZ ;ﬁu* [
0% __mms S — R
who S how

what where when which e

Question Type

Figure 4: Question type distribution for base model’s
incorrect predictions

6 Question Generation

Question Generation is a critical task for NLP. In
question generation, we train a model to take text
corpus as input and generate questions as the out-
put. Some models only require text corpus input,
whereas others require both text corpus and an-
swer strings to generate questions. It is used in
chatbots, customer service applications, etc., to
generate questions that can help further refine the
queries. It is also used in educational systems to
create practice questions.

6.1 Approach

Past works in question generation have used ques-
tion generation to augment the dataset with newer
data points and generate better results. In our ap-
proach, we wanted to see how effective LLMs can
be for question generation. LLMs can be used for
many tasks, including question generation. We
used a TS5-based model (Raffel et al., 2020) fine-
tuned for question generation. This model takes
context and answers as input to generate questions.
We generated new questions using the same context
and answer from the SQuAD dataset.

Input (C) ... in 1903, boston participated
in the first modern world series,
going up against the pittsburgh
pirates ...

(HC—A 1903

(2)C,A — Q@ when did the red sox first go to
the world series

3)C Q0—A 1903

Table 2: Example of how synthetic question-answer
pairs are generated.

In addition to using the same context and an-
swer to generate new questions, we also tried to
train a model to extract new answer strings from
the context. As shown in Table 2, we extract new
answers, which are passed through the T5-based
question generation model to generate new ques-
tions. We believed that implementing this approach
would enhance the quality of the questions gener-
ated. However, we did not observe satisfactory
outcomes. We believe that modeling start and end
tokens independently during prediction leads to
substandard answer phrase quality.

6.2 Results

Question Generation
® F1 m Exact Match
90.00
57.00 RE 38.4¢)
84.00

81.00 52.27]

Score

78.00

75.00

72.00
Base 5% 10% 20% 25% 100%

% increase dataset size

Figure 5: Question Generation using T5-based model

Figure 5 shows the results by augmenting the
dataset with newly generated questions. We see the
performance increasing as we increase the dataset
size by 10%. After that, we start seeing a decreas-
ing trend. This result shows that we can use LLMs
to improve performance for question-answering
tasks by augmenting datasets with new questions.

7 Conclusion & Future Works

This work shows that ensembling techniques and
question generation can help improve performance
for question-answering tasks, specifically for the
SQuAD dataset. On the other hand, oversam-
pling did not show improvement because the base
model (base-bert) itself can learn each question
type equally well. The ensembling approach of
using the model confidence as the proxy to decide
which model to believe in has shown improvements
and matches the intuition of the confidence param-
eter. As for question generation, we can use LLMs
to augment the dataset with new questions and im-
prove performance. In this study, we only showed
the results for T5. But as many LLMs are available
now, we can repeat this study for them and do a
comparative study.

For question generation models, many of them
require context and answer as input. This require-
ment of having an answer as an input string limits
the quality of new questions that we can create.
During our experiments, we tried to train a model
which takes the context as input and generates an
answer string as the output. This BERT-based
model took context as input and generated start
and end positions in the context as output, which
points to the answer string. Although we could not
get good results here, further study showed that
joint modeling of start and end tokens could lead
to better results. This is one potential direction that
can be explored. We also think that input features
like Part-of-Speech tagging and syntactic parsing
can improve the quality of generated answer string.
And thus, it will enhance the quality of generated
questions too.

8 Acknowledgements

We thank Google for their free Colab TPUs which
allowed us to train and fine-tune our models in a
short time. We also thank Prof. Junjie Hu for their
valuable inputs throughout the project.

9 Contributions

* Rahul Chakwate: Implemented the ensem-
ble module by creating the post-processing
script to obtain a confidence score for each
predicted answer. Also, setup the Question
Generation model for data augmentation.

* Mohil Patel: Performing data augmenta-
tion using oversampling methods for ques-
tion types which are under-represented in the
dataset. Trained and fine-tuned the Question
Generation model.

* Agam Dwivedi: Trained the context to an-
swer model and utilized it to generate new
responses for the Question Generation task.
Trained and fine-tuned the Question Genera-
tion model.

References

Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin,
and Michael Collins. 2019. Synthetic qa corpora
generation with roundtrip consistency.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452—466.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Luis Enrico Lopez, Diane Kathryn Cruz, Jan Chris-
tian Blaise Cruz, and Charibeth Cheng. 2021. Simpli-
fying paragraph-level question generation via trans-
former language models.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

http://arxiv.org/abs/1906.05416
http://arxiv.org/abs/1906.05416
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2005.01107
http://arxiv.org/abs/2005.01107
http://arxiv.org/abs/2005.01107

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2018. Bidirectional attention
flow for machine comprehension.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Andrew Ying. 2019. Really paying attention : A bert +
bidaf ensemble model for question-answering.

http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

	Introduction
	Background
	Experimental Setup
	The SQuAD Dataset
	Pre-processing the dataset
	Fine-tuning the models
	Post-processing and Evaluation

	Ensemble Method
	Approach
	Results

	Oversampling
	Approach
	Results

	Question Generation
	Approach
	Results

	Conclusion & Future Works
	Acknowledgements
	Contributions

