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Abstract—Graphs have become increasingly common data
structure. Large graphs exist as social network, web graphs,
etc. Because of their many real-world applications, we have seen
an increase in graph specific frameworks which can run graph
specific algorithms. In this paper we want to analyze performance
and system characteristics of different graph frameworks on well-
known graph algorithms. We have analyzed four frameworks
namely GraphChi, GraphX, GraphFrames and Spark. We have
collected results for three algorithms: PageRank, Connected
Components and Triangle Counting. For each of the algorithms,
we have collected the following metrics: Execution Time, CPU
Usage, Disk Read/Write Throughput, Memory Usage and Net-
work Throughput. From the experiments we have found that
GraphChi is a better choice for smaller graphs. But as graph
size increases to the order of 100 million edges, GraphX seems to
have an edge. We have also observed how specific system design
philisophies across different frameworks can affect all the above
mentioned metrics.

I. INTRODUCTION

Graphs as a data structure can be represented as a set of ver-
tices(V) and edges (E), i.e G = (V,E). Where vertices are the
nodes in the graphs and edges are the linking between pair of
nodes. Each vertex and edge can have its own set of properties,
which can be used to capture information about them. This is
a versatile data structure and can be used to capture a lot of
real-world data. For e.g. social networks (Facebook friends,
twitter followers, etc), web graphs (hyperlinks between web
pages), protein interaction graphs, etc. In the recent decade we
have witnessed the graph size grow from few million edges to
billions of edges. Processing such huge graphs efficiently is
a new technical challenge and there has been many research
work in that direction.

In the last decade there has been much work in design-
ing graph processing frameworks to work efficiently with
huge graphs. The research work spans in many directions.
Ranging from single machine frameworks, like GraphChi [1]
which focus processing huge graphs efficiently on a single
machine using Parallel Sliding Window concept to minimize
memory usage, to multi-machine frameworks like GraphX [3]
on Apache Spark [2], which designs specialized operators
in Spark to optimize graph processing and also uses better
data partitioning schemes to minimize the communication
overheads. Each of these frameworks have their own benefits
and trade offs, and are designed for different settings. For e.g.
GraphFrames [4] is a multi-node framework which can work

effectively with Spark SQL [5] and process graphs as relational
tables. Using GraphFrames in a data processing environment,
which already includes Spark SQL, will be easier, and it also
makes it easy for the developers as they can use their SQL
knowledge directly for making graph algorithms. This reduces
the development time.

In this paper, we analyzed the performance and system
characteristics of different graph frameworks on well-known
graph algorithms, in an attempt to answer the question: which
framework is better in what settings. Graph algorithms that we
analyzed in the paper are PageRank [6], Connected Compo-
nents and Triangle Counting. These are all well known graph
algorithms that are used in real-world applications for different
tasks. We compared the performance of these algorithms
against four different graph frameworks. Details about the
frameworks are in Table I.

TABLE I: Graph Frameworks

Frameworks Distributed Design Philosophy
or Single Machine

Spark [2] Multi-Node Generalized Distributed
Distributed Framework Data Processing Framework

GraphX [3] Multi-Node Built on top of Spark for
Distributed Framework optimized Graph Processing

GraphFrames [4] Multi-Node View graphs as relational table
Distributed Framework & operate on them using queries

GraphChi [1] Singe Machine Optimized for low memory
Framework usage to operate on huge graphs

The outline for the rest of the paper is as follows. Section II
discusses related works and section III covers the background
of frameworks shown in Table I. Section IV describes the
Experimental Setup for all the different frameworks and how
we have collected the performance and system characteristics
data. Section V is dedicated to the results for each algorithms
we analyzed, showing the Execution time, CPU usage, Disk
throughput, Memory usage and Network throughput for all the
frameworks. Section VI concludes with our takeaways from
this analysis. Lastly, section VII describes potential future
works.

II. RELATED WORK

Existing graph-parallel abstractions, in the domain of dis-
tributed systems, such as Pregel [11] and GraphLab [12]



encode computation as vertex programs which run in parallel
and interact along edges in the graph. However, real-world
graphs often follow a power-law degree distribution, which
implies that a few nodes are very highly connected, and many
nodes are very weakly connected. This leads to inefficient
partitioning in the distributed environment. PowerGraph [13]
abstraction addresses this issue by exploiting the Gather-
Apply-Scatter (GAS) model of computation to factor vertex-
programs over edges, splitting high-degree vertices and expos-
ing greater parallelism in natural graphs. All these distributed
systems, even if optimized to any levels, suffer from minimum
I/O and communication overhead among several nodes which
motivates using single machine instead. DGL-KE [14] is one
such approach, which uses a single machine with large CPU
memory and transfers batches synchronously. This approach
is limited by CPU memory capacity and slow training time
due to the data movement.

Above mentioned frameworks are domain specific imple-
mentations. In this paper, we also focus on the analysis of the
frameworks built on the idea of using general purpose dataflow
platform in the distributed setting. We believe that exploiting
the power of generic implementation methodology in the
context of big data systems can prove to be revolutionary. It
is also interesting to explore the possibility of single machine
frameworks replacing the distributed frameworks. Our moti-
vation for the selection of algorithms for this benchmarking
project is based on these observations.

III. BACKGROUND

In this section, we cover the system design details and
philosophy of the frameworks (Table I) that we have analyzed
in this study.

GraphChi [1]: Processing graphs using distributed comput-
ing frameworks can be inefficient due to all the communication
overhead involved. GraphChi tries to overcome this challenge,
by using a single machine which can process large graphs
efficiently. GraphChi is a disk-based system for computing
efficiently on graphs with billions of edges. Using well-known
methods it breaks down a large graph into small parts and uses
a novel Parallel-Sliding Windows (PSW) method to process
them efficiently. It also provides theoretical guarantees on
number of disk reads/writes.

GraphX [3]: With many specialized distributed graph pro-
cessing frameworks available, GraphX sets out to answer
the question: Can we use generalized distributed frameworks
with optimizations to achieve same performance as specialized
frameworks? To answer this question they designed an opti-
mized API over Spark to do graph processing. They did two
major optimizations to improve the performance: first is the
vertex-cut partitioning of graphs to minimize communication
across nodes and second is designing specialized join algo-
rithms & materialized view optimization which enables faster
processing for graphs.

GraphFrames [4]: There are some frameworks which are
designed as graph-on-RDBMS systems. GraphFrames sets out
to generalize this idea of graph-on-RDBMS systems. It is an

integrated system that lets users combine graph algorithms,
pattern matching and relational queries, and optimizes work
across them. GraphFrames is built on top of Spark SQL.
They have designed an execution strategy which generalizes
the strategies of graph-on-RDMS systems to support multiple
views of graphs. And they have designed a graph-aware query
optimization algorithm which takes into account available
views.

Spark [2]: Spark is a generalized distributed data process-
ing framework. It introduces Resilient Distributed Datasets
(RDDs), which are fault-tolerant, parallel data structures that
let users explicitly persist intermediate results in memory,
control their partitioning to optimize data placement, and ma-
nipulate them using a rich set of operators. Compared to other
systems, RDDs provide an interface based on coarse-grained
transformations (e.g., map, filter and join) that apply the same
operation to many data items. This allows them to efficiently
provide fault tolerance by logging the transformations used
to build a dataset (its lineage) rather than the actual data.
This allows Spark to perform better than other systems in
many tasks. We have added Spark in our analysis to have
a comparison between a basic implementation and specific
libraries built on top of Spark.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

We have run all our experiments on Cloudlab [7]. For multi-
node distributed frameworks (as detailed in Table I), we have
run a three VM setup, where one VM was working as master
& worker (simultaneously) and the rest two VMs were both
worker nodes. For single machine framework, we have run all
the experiments on a single VM setup. Each VM has the same
hardware configuration: Intel Xeon E5-2630 with 5 cores, 32
GB of RAM and 96 GB of disk space. We ensured that all
the frameworks were configured to utilize all the hardware
resource to full extent.

PageRank [6] works on directed graphs. We have run ex-
periments for PageRank on the datasets shown in Table II. On
the other hand, Connected Components and Triangle Counting
both run on undirected graphs. For both the algorithms, we
used the datasets shown in Table III.

TABLE II: PageRank Datasets

Dataset Nodes Edges
Berkeley-Stanford Web Graph 685,230 7,600,595

Pokec social network 1,632,803 30,622,564
LiveJournal social network 4,847,571 68,993,773

All datasets are taken from SNAP [8]

While running experiments, we ensured that each frame-
work is configured to utilize all the available hardware re-
sources. To capture system characteristics, we have used dstat
(linux tool) to collect the data. For multi-node frameworks, we
have collected dstat on all the 3 nodes as shown in plots in
the Results section. Before running each experiment, we have
cleared the OS filesystem caches to ensure that disk read/write
values are reliable. Also, for multi-node frameworks, we



TABLE III: Connected Components & Triangle Counting
Datasets

Dataset Nodes Edges
Social circles: Facebook 4,039 88,234

Twitch Gamers Social Network 168,114 6,797,557
LiveJournal network 3,997,962 34,681,189

All datasets are taken from SNAP [8]

have run experiments using HDFS as the filesystem backend.
Whereas, for single machine framework, we have the system
OS (Ubuntu 18.4) as filesystem backend.

V. RESULTS

In this section, we will be discussing the results for each
algorithm that we analyzed. For each algorithm, we analyzed
five metrics - Execution time, CPU Usage, Disk Throughput,
Memory Usage and Network Usage.

A. Pagerank

The plot in figure 1 shows the time taken by different
frameworks for PageRank Algorithm. We have collected
data for 50 iterations, fixed for all the datasets. The general
trend is that GraphChi is the fastest framework for small and
medium graphs. But for the largest graph that we analyzed,
GraphChi is taking same time as GraphX. In general, seeing
the trend, we expect the performance of GraphX to be better
for larger graphs. Another peculiar behavior we see is that
GraphFrames, even after being a graph specific framework,
is having the worst performance than Spark.

Fig. 1: Execution Time for PageRank

CPU Usage: For the CPU usage, we collected the data for
largest graph in the Table II, i.e. LiveJournal Social Network.
The first plot, as shown in figure 2, is plotting the CPU usage
for node-0 for all the frameworks. Few important trends that
we see here are, first even though GraphChi has a very good
performance, it seems to be bottlenecked at 60% CPU Usage.
We suspect that this is because GraphChi is designed to have
low memory usage, thus it is getting bottlenecked due to disk
reads/writes.

The second plot in figure 3 shows the CPU Usage for
all the three nodes for multi-node frameworks. A peculiar

Fig. 2: PageRank CPU Usage Node-0

trend that we see here is that GraphX only has CPU usage
on node-1 and node-2. Node-0 for GraphX is having very
low CPU usage. In general we have seen a trend that for
smaller graphs, GraphX only uses node-1 and as the graph
size increases we see node-2 CPU usage. Considering the
trend we expect that we will see all three nodes being used
once we go for even larger graphs. This behavior could be
due to GraphX’s specialized vertex-cut partitioning scheme
and other optimizations which are designed to minimize
communication overhead.

Fig. 3: PageRank CPU Usage for all 3 nodes

Disk Throughput: In disk throughput we are plotting disk
reads & write throughput. Before collecting any data we have
cleared the OS filesystem caches to ensure that the reads
are happening from the disk. The figure 4 shows the node-0
disk reads and writes for all the frameworks (Note: We
have plotted node-1 for GraphX also because of its distinct
behavior of not using node-0 as seen in figure 3). In the
disk reads we see that GraphChi is having a high disk read
throughput, which is because it is designed to have sequential
disk reads. In disk writes we observe that GraphX node-0 is
having four huge disk write spikes. Other than that disk writes
for Spark and GraphFrames are constantly happening at a
fixed rate. Majority of these writes corresponds to temporary
file writes.

Memory Usage: Similar to CPU Usage, in memory usage
also we have plotted two graphs. The first plot is shown



Fig. 4: PageRank Disk Throughput

in figure 5. This plot shows the memory usage for all the
frameworks for node-0. We see a clear trend that GraphChi
is having very low memory usage, which is expected as it is
designed to have low memory usage. Another trend that we
see repeatedly across all the algorithms is that GraphFrames
is always having the highest memory usage across all the
frameworks.

Fig. 5: PageRank Memory Usage Node-0

We have also plotted the memory usage for all the nodes
as shown in figure 6. GraphFrames and Spark both show
similar memory usage for all the three nodes. On the other
hand, we only see memory usage for node-1 and node-2 for
GraphX. This trend is same as what we have seen for CPU
Usage earlier.

Fig. 6: PageRank Memory Usage all nodes

Network Usage: The last system characteristic that we

analyzed is the network throughput. We have analyzed both
the network receive and send behavior. Note that network
behavior plots are only relevant for multi-node frameworks.
Figures 7 and 8 show the network receive and send behavior
for all the multi-node frameworks. Here we see that the
network activity is very less for GraphX compared to
GraphFrames or Spark. We think that this behavior is due to
GraphX’s (vertex-cut) partitioning scheme which is designed
to minimize communication overhead. Also this property can
be a major contributor to its good performance.

Fig. 7: PageRank Network Receive Throughput

Fig. 8: PageRank Network Send Throughput

B. Connected Components

The second algorithm that we analyzed was connected
components. GraphX, GraphFrames and GraphChi provide
APIs to run connected components directly. For spark we
implemented the large-small star algorithm [9] to collect the
data.

Figure 9 shows the execution time for connected
components for all the datasets from Table III. Clearly
GraphChi is the best framework here in terms of execution
time. Followed by GraphX, which is the best choice among
multi-node frameworks. Spark’s implementation of large-
small star algorithm seems to performing the worst.

CPU Usage: The CPU usage for connected component is
shown in figure 10. We have collected the CPU usage (and
rest of the metrics) only for LiveJournal network dataset, as it



Fig. 9: Execution Time for Connected Component

has the largest execution time. In here we see similar trends as
seen in PageRank. First similar observation is that GraphChi
is still bottlenecked at around 60% CPU Usage, even though
it is performing the best. Second observation is that GraphX’s
node-0 is still showing low CPU usage, same as PageRank.
We have also plotted GraphX’s node-1 CPU usage which is
showing good CPU usage. The behavior is similar as before,
which we think is due to its partitioning scheme designed to
minimize communication overhead. Last peculiar observation
that we see is in Spark, we see that for roughly half of its
execution time Spark is having very low CPU usage (this
behavior is seen across all the nodes). This might be due
to inefficiencies in large-small star algorithm implementation,
and we think Spark is trying to read data during that time.

Fig. 10: Connected Components CPU Usage Node-0

Disk Throughput: The disk throughput plots for connected
components is shown in figure 11. The trends here are similar
as before, we see large disk read throughput in GraphChi,
which is due to its sequential read behavior. We also see high
disk writes in GraphFrames and Spark, which are probably
corresponding to writing temporary files.

Memory Usage: Memory usage plots for all the frameworks
are showing in figure 12. GraphFrames is showing the highest
memory usage, same as before. Also GraphChi is showing the
smallest memory usage, which is in accordance of its system
design, which tries to minimize memory usage. GraphX node-
1 is showing a high memory usage. Spark is not showing

Fig. 11: Connected Components Disk Throughput

a high memory usage, which could be reason for its low
performance as it might be trying to read/write data from disk
during its execution.

Fig. 12: Connected Components Memory Usage

Network Usage: In network usage, as shown in figure
13, we are seeing a clear trend that GraphFrames is having
very high network usage. Which could be indicative of its
inefficient partitioning scheme as it is requiring too much
data movement across the nodes. This may reflect a broader
issue in GraphFrames which could be reason for its bad
performance in general. In contrast to that GraphX is having
a very low network activity, which is an indication of its
optimal partitioning scheme. This could be a major contributor
to GraphX’s better performance.

Fig. 13: Connected Components Network Usage



C. Triangle Counting

The third algorithm that we analyzed was triangle count-
ing. GraphX, GraphFrames and GraphChi provide APIs to
run triangle counting directly. For spark we used a custom
implementation [10].

Figure 14 shows the execution time for triangle counting
for all the datasets from Table III. Clearly GraphChi is the
best framework here in terms of execution time. Followed
by GraphX, which is the best choice among multi-node
frameworks, the gap between GraphChi and GraphX is
increasing. Spark and GraphFrames both failed with out of
memory exception for medium and large graphs.

Fig. 14: Execution Time for Triangle Counting

CPU Usage: The CPU usage for triangle counting is shown
in figure 15. We have collected the CPU usage (and rest of
the metrics) only for fb-combined network (smallest graph in
Table III) dataset as Spark and GraphFrames both failed with
out of memory exception for medium and large graphs. In
here we see that all the systems show similar CPU usage.
This could be because the graph is small and every system
has some initialization leading to high CPU usage during the
start.

Fig. 15: Triangle Counting CPU Usage Node-0

Disk Throughput: The disk throughput plots for triangle
counting are shown in figure 16. The trends are showing
expected disk read behavior for all the systems. We see large
disk read throughput initially to load the graph. Disk write
does not show anything out of ordinary.

Fig. 16: Triangle Counting Disk Throughput

Memory Usage: Memory usage plots for all the frameworks
are showing in figure 17. GraphFrames is showing the highest
memory usage followed by Spark and GraphX. GraphX node-
1 is showing the lowest memory usage. Spark is once again
not showing a high memory usage, which could be reason for
its low performance as it might be trying to read/write data
from disk during its execution.

Fig. 17: Triangle Counting Memory Usage

Network Usage: In network usage, as shown in figure 18,
we are seeing a clear trend that GraphFrames is having very
high network usage. This as, we pointed out earlier, could be
indicative of its inefficient partitioning scheme. Due to which
we are seeing too much data movement across nodes. This
could bottleneck GraphFrames’ performance. Comparing that
with GraphX, we see that it is showing very low network
activity and this is due to its optimal partitioning scheme.

Fig. 18: Triangle Counting Network Usage



VI. CONCLUSION

The main objective that we wanted to answer from this
study was to understand which framework to use and in what
settings. To this end, we have identified that GraphChi is
the best framework, as it has consistently provided the best
timings for all the datasets we tested. But we do see a trend
that GraphX will be a better choice for graphs larger than
100 million edges. As the graph sizes increases, GraphChi is
limited by its disk read/writes which makes GraphX perform
better. Also, GraphX can be easily scaled horizontally, unlike
GraphChi which is a single machine Framework.

Other key observations from this study are, first we have
observed that GraphChi is generally bottlenecked at 60%
CPU usage even for large graphs. This can be due to its
system design which tries to minimize memory usage and
thus requires frequent disk read/writes. Second, we have
observed that GraphX’s vertex-cut partitioning scheme, which
is designed to minimize communication overhead, is helping it
perform better. It ensures minimal data movement across nodes
and thus saves time. Lastly, we observe that GraphFrames has
both high network activity and memory usage. This could be
indicative of its suboptimal data partitioning scheme which
requires too much data movement across nodes. This is a
contributing factor to bad performance of GraphFrames. Over-
all, having a good partitioning scheme and communication
optimization will be beneficial for performance improvements
in multi-node systems.

VII. FUTURE WORK

In this study, for multi-node systems, we have run all the
experiments on a three VM setup. A good future work would
be to analyze the impact of increasing the number of nodes in
the multi-node setup and see how it impacts the performance.
Another potential direction can be to analyze the impact of
random node failure in multi-node systems while experiments
are running. And the last direction could be to drop memory
and buffer caches during experiments to see which frameworks
are more cache sensitive.
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