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ABSTRACT
Log-Structured Merge-Tree key-value stores convert ran-
dom key value insertions into sequential writes on disk.
These systems historically perform well on spinning
hard disks, but their log-structured nature leads to high
write amplification. How to best utilize newer and faster
storage technologies like NVMe with these systems re-
mains an open question. We evaluate RocksDB perfor-
mance on machines with SATA SSD and NVMe SSD
disks, and propose a method to maximize overall system
throughput by writing to both disks concurrently.

1 INTRODUCTION
RocksDB[2] is a persistent key-value store for fast stor-
age environments. It is based on the technology of the
Log-Structured Merge-Tree[14] (LSM-Tree) and pro-
vides high insert performance. It is originally developed
by Facebook based on LevelDB and has been adapted
to various systems. Use cases include a number of back-
end systems at Facebook and storage engines of popular
databases such as MySQL and MongoDB.

The NVM Express (NVMe) is an interface developed
to fully utilize performance of non-volatile memories
such as NAND flash memory. Though conventional Se-
rial AT Attachment (SATA) interface has been initially
utilized for accessing Solid-State Drives (SSDs), SATA
is originally developed for Hard Disk Drives (HDDs)
and it restricts SSDs from providing their maximum
performance.

With cost differences between NVMe SSD and SATA
SSD in mind, an interesting approach has been proposed
by SpanDB[8]. SpanDB is based on RocksDB and it
utilizes a combination of NVMe SSD and SATA SSD.
It stores hot Write-Ahead Log (WAL) and top levels
of LSM-Tree into an expensive NVMe SSD and stores
cold bottom levels of LSM-Tree into a cheaper SATA
SSD. By doing so, SpanDB is able to provide high per-
formance with limited affordable cost.

Motivated by SpanDB, we propose a method which
splits hot data1 to NVMe SSD and SATA SSD and pro-
vides the sum performance of both devices. Though
performance of SATA SSD is relatively lower compared
to NVMe SSD, SATA SSD is enough fast and we believe
it is waste of the device performance to store only cold
data in it. By splitting hot data to NVMe SSD and SATA
SSD and utilizing the performance of both disks, we try
to make RocksDB even faster compared to SpanDB’s
approach.

We implemented our approach in two ways to see the
performance differences. One is a method which splits
data in Sorted String Table (SSTable) file granularity.
The other is a method which splits data in block granu-
larity using software Redundant Array of Independent
Disks (RAID).

We conducted some experiments to show the perfor-
mance improvement by our approach. In contrast to
our expectations, our approach falls between the perfor-
mance using single NVMe SSD and performance using
single SATA SSD. Though we tried to discover the root
cause of the performance bottleneck in our experiments,
unfortunately, we could not discover it due to time frame
limitations.

The rest of this paper is organized as follows. Sec-
tion 2 explains RocksDB and evolution of storage tech-
nologies in more detail as a background of our research.
After showing our current design and implementations
in Section 3, we illustrate current experimental results
in Section 4. We review some related works in Section 5
and conclude our paper in Section 6 with pointing some
future directions.

1Our current implementation splits whole LSM-Tree, instead of
splitting only hot top levels of LSM-Tree. Due to some reasons for
experimentations, our current implementation does not utilize WAL.



2 BACKGROUND
2.1 RocksDB
RocksDB [2] is an open-source, embedded key-value
store designed to be fast and efficient. It is implemented
using a log-structured merge-tree (LSM [14] tree) data
structure, which allows it to store and retrieve data
quickly, even when dealing with large volumes of data.
An LSM tree is a data structure used to store data on disk
or other persistent storage. It consists of two or more
levels of storage: a fast, in-memory level that is used for
recent writes, and one or more slower, persistent levels
that are used for older data. When data is written to the
in-memory level, it is eventually merged with the per-
sistent levels in a process called compaction. This helps
keep the LSM tree balanced and allows it to remain
efficient as data grows. LSM trees are well-suited for
applications that require high write performance, such as
databases and messaging systems, but can have higher
read latencies and require additional space to store the
in-memory and persistent levels of data.

In the RocksDB write path, as shown in Figure 1, any
key-value pair write request made by the user is first
written to a Write Ahead Log (WAL) for persistence.
The key-value pair is then written to an in-memory data
structure called a memtable. A memtable is essentially
a buffer that stores new data in memory until it can be
written to disk. RocksDB stores multiple memtables
in memory and switches between them as they fill up.
In the background, filled-up memtables are pushed to
disk by a background flush thread, which converts the
memtables into SSTables (Sort String Tables) before
pushing them to level 0. An SSTable is a file on disk
that stores a sorted list of key-value pairs. Once level
0 fills up, another background thread comes in to do
compaction. The compaction process reads the SSTables
from a level, removes duplicates, and collates the data
into bigger SSTables before pushing them to a lower
level. This process helps to reduce the number of stale
and duplicate entries in the database.

In the read path of RocksDB (as shown in Figure
2), client requests for a specific key-value pair are first
checked in the memtables and in-memory cache. If the
key is found, the value is returned immediately. If the key
is not found in the in-memory data structures, RocksDB
goes to the disk to search for the value. While searching
the levels on the disk, RocksDB starts from the lower
levels and moves toward the higher levels to avoid stale

Figure 1: RocksDB Write Path [13]

Figure 2: RocksDB Read Path

or duplicate entries that may exist across levels. To im-
prove read performance, RocksDB uses a per SSTable
Bloom filter [7] to quickly identify whether the SSTable
needs to be read or skipped. This check helps to reduce
the number of disk reads and improve performance.

2.2 SATA, NVMe, and SPDK
SATA is an interface originally developed to connect
devices such as HDDs and optical devices to computers.
So, its maximum bandwidth is 600 MB/s and cannot
fully utilize performance of SSDs.

NVMe has been developed to fully utilize perfor-
mance of SSDs. It has various characteristics to im-
prove performance. One example is increased number
of queue depth to provide high parallelism. While SATA
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Figure 3: SPDK Application Event Framework [18]

provides one command queue which holds up to 32 com-
mands, NVMe provides 65535 command queues which
holds up to 65536 commands per queue. By implement-
ing these optimizations, NVMe provides maximum of
16,000 MB/s, which is 26 times higher compared to
SATA interface.

Another important technology is Storage Performance
Development Kit[18] (SPDK). It is a library which pro-
vides high-speed storage access based on two main char-
acteristics. One is user-mode storage access to avoid
context switches between applications and operating
systems. The other chracteristic is polling-based com-
pletion check to avoid interrupt overhead. SPDK event
framework uses event queues and polls the I/O device
to check for completion, as shown in Figure 3. It uses
a lockless architecture and a user-space driver to im-
prove performance. Same as SpanDB, our implementa-
tion uses SPDK to utilize the maximum performance of
NVMe SSDs.

We conducted some measurements using fio[1] bench-
marking tool to check performances differences between
these technologies. Figure 4 shows bandwidth and Fig-
ure 5 shows IOPS. We set block size to 1MB and 4KB
respectively for measurement of bandwidth and IOPS.
To measure the performance improvement with SPDK,
we also measure performance with ext4 file system.

Figure 4 and Figure 5 illustrates that ext4 file sys-
tem over NVMe SSD provides 4-5 times performance
improvement in bandwidth and more than 3 times per-
formance improvement in IOPS respectively compared

Figure 4: Bandwidth measured with fio

Figure 5: IOPS measured with fio

to ext4 file system over SATA SSD in both READ and
WRITE operations.

SPDK provides higher performance for READ oper-
ations over ext4 file systems. Especially, READ IOPS
increased about three times. WRITE operation has al-
ready been saturated with ext4 file system, so SPDK did
not provide further performance improvement. These
results are consistent with specifications provided by
vendors[3, 4] except for READ bandwidth. We could
not discover the reason of the difference.

3 DESIGN AND
IMPLEMENTATION

Motivated by the knowledge that background compaction
consumes a great deal of disk bandwidth, we explored
ways to maximize the disk throughput of our system.
Other recent work, such as SpanDB [8], use placement
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strategies to take advantage of the lower latency achiev-
able with NVMe and SPDK. For example, since write-
ahead logging is on the critical write path, lower latency
times in write-ahead logging significantly impact sys-
tem performance. Since this type of strategy had already
been explored, we chose to disable write-ahead logging
and maximize the overall sequential write throughput of
the system, with the hope that higher throughput during
compaction would lead to better system performance in
write-heavy workloads.

Figure 6: RocksDB Compaction Write Time

In order to maximize disk bandwidth, we wanted to
use both disks in parallel. While the NVMe SSD is much
faster than the SATA SSD, leaving the SATA SSD un-
used while writing to the NVMe device would limit
the overall bandwidth of the system. To determine how
expensive disk writes during compaction are, we per-
formed an experiment in which level 0 was filled with be-
tween 10-100MB of sequentially-keyed data (Figure 6).
Default compaction was turned off, and we manually
applied a simple compaction algorithm which read in
level 0 files and wrote them out in level 1. This experi-
ment was done on both disks. Write and fallocate
system calls, which are only dependant on the operating
system for their operation, return in the same amount
of time regardless of which disk they are performed on.
Fsync system calls show a large performance differ-
ence depending on the disk. Since sync and flush are
disabled in ordinary compaction, we determined that we
could issue writes to both disks without one operation
blocking the other.

We used two strategies to split data between disks.
SSTable files are named by their number – 000012.sst,
for example. By using a modulo operator, we were able
to store SSTable files on either disk in 1:1, 1:3, and
1:5 ratios, with the larger portion stored on the NVMe
disk. Separately, we used mdadm, which is a software
RAID tool included with Linux to stripe data between
the disks.

4 EVALUATION
We evaluated our system on a CloudLab machine with
64 Cores (AMD 7543) and 256GB Memory. It contained
two SSDs connected using a SATA and an NVMe link.
In this section, we describe the benchmarking tool used
for the experiments followed by a discussion of the
results.

4.1 Benchmarking Tool
db_bench [10] is the main tool used for measuring the
performance of our system. It is developed by the RocksDB
team with some modifications from the LevelDB ver-
sion. It supports various configurations such as the num-
ber of background jobs, workload categories (random
and sequential reads and writes), compression, and tog-
gling write-ahead-logging. After running some initial
benchmarks with default configuration, we made the
following observations: (1) Sequential writes did not
trigger compaction. (2) WAL without sync did not show
device performance (instead just the cache performance).
(3) Default size of the database was not large enough
to incur compaction. Thus, we selected the following
workload - Random writes with a database size of 20
GB.

As mentioned previously, RocksDB runs the flush
and compaction jobs in the background. The number of
threads for these background jobs can be configured in
db_bench either by specifying the number of flush and
compactions threads explicitly or by specifying the total
number of jobs. RocksDB calculates these values using
the following equation:

𝐽𝑜𝑏𝑠𝑓 𝑙𝑢𝑠ℎ =
𝐽𝑜𝑏𝑠𝑡𝑜𝑡𝑎𝑙 + 3

4
(1)

𝐽𝑜𝑏𝑠𝑐𝑜𝑚𝑝 = 𝐽𝑜𝑏𝑠𝑡𝑜𝑡𝑎𝑙 − 𝐽𝑜𝑏𝑠𝑓 𝑙𝑢𝑠ℎ (2)
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(a) Running on ext4 (b) Running on SPDK with WAL disabled

Figure 7: Flamegraph of db_bench

4.2 Results
Figure 7a shows a flamegraph of running db_bench on
an ext4 filesystem. There are majorly three mountains de-
noting three parallel jobs - min thread running db_bench ,
background flush and background compaction jobs. From
the main thread, we observed that WAL consumes a
significant number of CPU cycles. This would be a bot-
tleneck for our experiments and the performance differ-
ences would not show up correctly. Hence, we disabled
WAL for all our experiments.

Figure 7b shows a flamegraph of running db_bench on
SPDK with WAL disabled. We observed that the number
of cycles for background flush jobs reduced from 21%
to 4%. This is because the actual writes are now being
handled by the SPDK thread. The flush job posts as
async request to the SPDK thread, which performs the
actual write to the NVMe SSD.

We evaluated our splitting-based mechanism on two
filesystems. Figure 8a and 8b show the throughput and
latency of running RocksDB on ext4 by varying the num-
ber of background jobs. We measured the performance
of NVMe, SATA SSD and the splitting techniques for
various modulo values. For example, Split-Mod4 refers
to 3 parts in NVMe and 1 part in SATA SSD. We also
evaluated RAID0 which strips the data at a block-level
granularity and divides them across multiple devices si-
multaneously. The results show that NVMe is the fastest
followed by Split-Mod6, Split-Mod4 and so on, SATA
SSD being the slowest. We also observed the similarity
in the performance of RAID0 and Split-Mod2.

Next, we performed a similar experiment on SPDK
and compared it with NVMe and SATA SSD. Figure 8c

and 8d show the throughput and latency of RocksDB
on SPDK. Since we expect a caching layer in NVMe
(which is absent in SPDK), we enabled direct I/O for
NVMe writes in this case. Splitting results are similar to
the ext4 case. However, the key observation is that the
performance of SPDK-Mod4 is better than the perfor-
mance of vanilla SPDK. This correlates to our proposal
that using the splitting method we are able to utilize the
bandwidth of both devices simultaneously.

5 RELATED WORKS
The developers of RocksDB [9] recognize that the de-
sign goals of the system have changed over time due
to hardware trends. RocksDB is very tunable, which
allows it to adapt to different system environments. The
question of how to best use RocksDB with Storage Class
Memory and other new storage technologies has been
explored by many research groups over the past several
years.

Recent papers focus on reducing latency by adapting
I/O scheduling based on the load characteristics from
the client [5]. SPDK [18] promises a way to reduce I/O
latency via user-space device polling, and avoids modifi-
cations to the kernel I/O stack [6] [16]. A recent system,
Vigil-KV [12], uses SPDK with NVMe-specific features
such as Sets and Predictable Latency Mode (PLM) to
improve Get operation latency. SpanDB [8] uses SPDK
and a novel placement strategy to reduce latency along
the critical write path. Unlike these systems, our work
focused exclusively on increasing write speed during
compaction by utilizing all available disk bandwidth.
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(a) ext4 Throughput (b) ext4 Latency

(c) SPDK Throughput (d) SPDK Latency

Figure 8: Performance comparison of RocksDB by varying the number of background jobs

ListDB [11] and Pacman [17] use byte-addressable per-
sistent memory to perform compaction more efficiently.
We did not explore uses for persistent memory.

6 CONCLUSION AND FUTURE
WORK

Our approach consisted of splitting the LSM tree at a
file level (SSTable) granularity. From our experiments,
we observed that the performance of this approach was
in between NVMe and SSD. However, the splitting tech-
nique using SPDK had better performance than using
vanilla SPDK. Thus, we were able to utilize the band-
width of both devices simultaneously. The flamegraphs
showed that SPDK uses only a single event queue (re-
actor) for all reads and writes. We believe that having
multiple event queues in SPDK, along with caching,
could improve the performance of our system.

For future works, we propose two major directions.
First, improve the performance of the system by ad-
dressing the limitations of the BlobFS filesystem used in
the project. Specifically, implement caching in BlobFS
and allow for multiple writer threads. The second is to
investigate the possibility of dynamically placing files
on disks based on real-time disk bandwidth availability
rather than static split. By leveraging the SPDK event
framework’s event queue (Figure 3) and using the event
queue size as a proxy for disk load (a technique similar
to Shenango [15]), we can optimize file placement for
maximum performance at runtime.
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