Efficient Distributed Transfer Learning Using Pipelined Model Parallelism
Daniel McNeela, Mohil Patel, Surabhi Gupta

Problem Statement

e Our goal is to build a system that can perform
efficient distributed transfer learning.

e Transfer learning: incrementally build
knowledge on top of a pretrained model - by
re-training just the last few layers!

® Problem: Learn multiple new models from
one! We aim to leverage pipelined model
parallelism for this problem.

Related work

® Existing systems implement pipeline parallelism to
achieve training speedups and better CPU/GPU
utilization for training deep neural networks.

eProblems: pipedream suffers from staleness.

oExisting solutions to staleness need lots of extra
memory to store old weights.

eOur question: How can we use this idea without
having to deal with staleness.

Worker 1
Worker 2 \
AN

Worker 3

NN
Worker 4)\

Startup State

Steady State

Time

I Forward Pass [| Backward Pass Y ldle

Our Proposal

e One basic approach is to train each model on a
separate machine. (our baseline)

e Our hypothesis -> Could do better if all machines
‘collaborate’ to compute the forward tensors of the
fixed part.This avoids repeating forward computation!

e Could reduce the training time and the memory usage!

® Proposal: Use model pipelining to achieve this!

System Design

Training Diagram (3-node setup)

eSetup: Three models being fine-tuned in parallel. Each has
the same fixed part and different trainable layers!

eInfra Design: Split the fixed layers across machines and
assign trainable layers to each one separately.

e Algorithm: Perform forward passes in a pipelined fashion
by communicating intermediate data across machines.

The training part happens in parallel on each machine.

eScheduling: |-F, I-B to ensure progress!

20

N

Early results

Memory usage comparison

1400

m 1200
=

£ 1000

o

g 800 pipelined 16
=) baseline 16

= 600 —— pipelined 128
< —— baseline 128

—— pipelined 1024
—— baseline 1024

0 50 100 150 200 250 300 350
Time (sec)

e Metrics: Training time, Memory, CPU, network
usage.

® Pipelined transfer learning requires less than half
the time and much lower memory compared to
the baseline.

Current Status

Implementation of entire pipelined setup from
scratch!

Still working on a better way to propagate labels
for the training phase.

More experimentation:

o Study the I/O impact of our distributed setup
and investigate its variation with batch sizes.

o Comparison of CPU utilization w.r.t. baseline.

An interesting future direction: Think about more
efficient model splits for the forward pass.

