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Problem Statement

e Our goal is to build a system that can perform
efficient distributed transfer learning.

e Transfer learning: incrementally build
knowledge on top of a pretrained model - by
re-training just the last few layers!

® Problem: Learn multiple new models from
one! We aim to leverage pipelined model
parallelism for this problem.

Related work

® Existing systems implement pipeline parallelism to
achieve training speedups and better CPU/GPU
utilization for training deep neural networks.

eProblems: pipedream suffers from staleness.

oExisting solutions to staleness need lots of extra
memory to store old weights.

eOur question: How can we use this idea without
having to deal with staleness.
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Our Proposal

e One basic approach is to train each model on a
separate machine. (our baseline)

e Our hypothesis -> Could do better if all machines
‘collaborate’ to compute the forward tensors of the
fixed part.This avoids repeating forward computation!

e Could reduce the training time and the memory usage!

® Proposal: Use model pipelining to achieve this!

System Design

Training Diagram (3-node setup)

eSetup: Three models being fine-tuned in parallel. Each has
the same fixed part and different trainable layers!

eInfra Design: Split the fixed layers across machines and
assign trainable layers to each one separately.

e Algorithm: Perform forward passes in a pipelined fashion
by communicating intermediate data across machines.

The training part happens in parallel on each machine.

eScheduling: |-F, I-B to ensure progress!
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e Metrics: Training time, Memory, CPU, network
usage.

® Pipelined transfer learning requires less than half
the time and much lower memory compared to
the baseline.

Current Status

Implementation of entire pipelined setup from
scratch!

Still working on a better way to propagate labels
for the training phase.

More experimentation:

o Study the I/O impact of our distributed setup
and investigate its variation with batch sizes.

o Comparison of CPU utilization w.r.t. baseline.

An interesting future direction: Think about more
efficient model splits for the forward pass.



