
CS 744 Project: Efficient Distributed Transfer Learning using Pipelined
Model Parallelsim

Daniel McNeela Mohil Patel Surabhi Gupta

Abstract

With an increase in deep neural network model sizes
to many billions of parameters, it has become im-
practical and infeasible to perform re-training of
such large models from scratch. Instead, a large
body of work focuses on fine-tuning pre-trained
models as new inputs arise and to specialize models
to various tasks. In our project, we have explored
one way to perform transfer-learning of three mod-
els simultaneously from a single pre-trained model
in an efficient, distributed manner. We devise a
way to perform this training using model pipeline
parallelism while bypassing the weight staleness is-
sues that are common in pipelined systems. Our
results show significant reductions in both memory
utilization and training time as compared to the
baseline.

1 Introduction and Motivation

With the advent of very fast compute hardware and
infrastructure [6,7], the pace of advances in machine
learning and AI has skyrocketed. With this, the
community has seen a rapid increase in the use of
deep neural networks in all applications ranging
from image classification, virtual assistants, chat-
bots, fake news detection, robotics, and healthcare
to even music production and self-driving cars. It
is no surprise that these models are comprised of
millions of parameters and features. For instance,
the recently released Chat-GPT has a whopping
175 billion parameters and was trained on nearly a
trillion words!

With such large models, it is often not desirable
or even feasible to re-train them very frequently.
Instead, such models are often fine-tuned to per-
form specific tasks or re-calibrate them as new data
arise. For this, a short training phase is performed
on an existing model that has been pre-trained on

large, application-related datasets to obtain general
domain knowledge. This general idea of building
upon pre-existing knowledge is called transfer learn-
ing [13].

In our class project, we explored one such transfer
learning scenario where the goal is to fine-tune a
pre-existing model into three separate models.

2 Background and Related work

2.1 Distributed Model Training

There are two key approaches to performing dis-
tributed deep neural network training: data paral-
lelism and model parallelism. In this section, we
describe each approach briefly.

2.1.1 Data Parallelism:

This approach is typically used when the training
data is too large to fit inside the memory of a single
GPU. The main idea here is to split the training
data across multiple GPUs and perform training sep-
arately on each GPU. The weights are periodically
synchronized and updated across all GPUs to reflect
the training of the entire dataset together [9, 10].

2.1.2 Model Parallelism:

This approach is typically used when the model is
too large to fit into the memory of a single GPU.
Hence, the model is split across layers and each
block of layers is sent to a different GPU. Pipelining
is then used to train the model across all GPUs
[4,5, 12].

One of the major challenges with pipelined sys-
tems like PipeDream [12] is the issue of weight
staleness, which can result in longer convergence
times or even convergence failure. Weight staleness
happens when the weights used for the forward pass
of a batch are different from the ones available for

1



the backward pass. This problem occurs because,
in order to fill the pipeline, the next batch must
be processed before the current batch is completed.
This means that the weights used for the forward
pass of a batch are already updated by the time
the backward pass needs to be performed - this
is what leads to the convergence issues described
earlier. PipeDream addresses this issue by storing
old weights, but this increases memory usage and
reduces the benefits of model parallelism.

2.2 Transfer Learning

The main idea of transfer learning is that, instead of
training a model from scratch with large amounts of
data, models can learn to solve new problems with
very few samples by leveraging previously trained
models [2, 3]. Transfer learning formalizes a two-
phase learning framework: a pre-training phase to
capture knowledge from one or more source tasks
and a fine-tuning stage to transfer the captured
knowledge to target tasks.

There are essentially 4 broad categories to transfer
learning models:

• Model fine-tuning: Here, a pre-trained model in
one domain(source) is used as an initialization
step for the training in the target domain. This
initial model is fine-tuned to cater to the target
domain.

• Feature-based methods: Here, the idea is to
find a common feature space and transform the
target domain features into the source domain
features and then leverage the model trained
for the source domain.

• Instance-based methods: Here, the source sam-
ples are reweighted so that the source domain
data and target domain data share the same
distributions.

• Model-based methods: The idea is to reuse pre-
trained knowledge by distilling a larger trained
model into a smaller model.

3 Idea

The setting in our project is to fine-tune a pre-
trained model into 3 separate models. One basic
approach is to copy the entire model into 3 different

machines and have them perform the transfer learn-
ing for each model separately and independently.

Our key observation stems from the fact that
for transfer learning, a big portion of the model is
kept fixed - this means that this fixed part only
undergoes forward computation, and no parameters
are updated. Hence, there is no real need to per-
form this forward computation independently on 3
different machines as this leads to repeated work!

Our approach to avoid this repeated work is to
provide a mechanism for the three machines to
’collaboratively’ perform the forward computation
and then independently train the trainable part
of the model. This collaboration is achieved via
pipelined model parallelism.

Figure 1 shows the system design. We split the
base, pre-trained model into 4 parts - where each
part comprises multiple layers. The first three parts
are fixed and the 4th part is trained into three
different versions. Thus, each machine is assigned
one part from the fixed section and 1 version of the
4th part.

Each batch of data then moves between the ma-
chines in a pipelined fashion (each machine perform-
ing forward computation on it’s part of the model).
Once the last machine computes the forward ten-
sors, it broadcasts the result to the others and they
then proceed to compute the Forward + Backward
computation on the trainable part (shown in green
boxes in the figure). We perform 1-Forward and 1-
backward scheduling to interleave the forward and
training phases in the steady state of the pipeline.

3.1 Potential Benefits

Compared with the baseline (where each machine
performs transfer learning of 1 model indepen-
dently), this approach leads to both lower memory
cost and lower training time. This is because of the
following reasons:

1. Memory: Each machine holds two parts of the
model (1 fixed part and 1 training part). In
contrast, in the baseline setup, each machine
would have all 4 parts of the model. Thus,
this approach can, theoretically, reduce memory
usage to half. In addition to this, the baseline
setup would also have a copy of the dataset

2



Figure 1: System Diagram

in all the machines. On the other hand, in the
pipelined architecture, the input data will be
present only in the first machine and only the
forward computed tensors will be sent to the
other machines!

2. Train Time: Pipelining the forward computa-
tion and the overlap between computation and
communication leads to reduction in the overall
training time. To understand this, consider the
following: when batch 1 is undergoing forward
computation on the second part of the model
(on machine 2), machine 1 can start the forward
computation on part 1 for batch 2. This paral-
lel computation could lead to lowered training
time!
Another way to think about this is the follow-
ing: in the baseline, each machine performs 5
units of computation for each batch (3 forward
passes for the fixed model, 1 forward and 1
backward pass for the trainable part); in con-
trast, the pipelined setup only performs 3 units
of computation (1 forward pass for the fixed
model, 1 forward and 1 backward for the train-
able part). Thus, we expect that the train time
on each machine would roughly be 3/5 of the
baseline setup!

3. Staleness: In pipedream [12], the pipelined
setup led to weight staleness issue. This hap-
pened because the system there performed both

forward and backward computations in the
pipelined fashion. In contrast, our setting and
approach does not lead to any staleness issues.
This is because we do not perform the train-
ing computation as part of the pipeline (in
the sense that this part happens independently
across all machines) and only the forward com-
putation is pipelined. This ensures that the
backward phase for any batch will always get
the correct version of the weights without the
need for any more management on the algo-
rithm front!

4 Implementation Details

We have used the PyTorch Distributed asyn-
chronous communication library to implement the
aforementioned pipelining infrastructure.

Our code has two major parts: implementing an
async communication library between different ma-
chines and using this library to implement model
training.

The library implements async communication us-
ing PyTorch’s async isend and irecv operations to
send forward tensors between nodes. Each machine
maintains two circular queues: one for sending data
and one for receiving it. The queue size is config-
urable, and when the queue is full, we block the op-
eration until space is available. Increasing the queue
size can lead to better computation and communica-

3



tion overlap. We also use PyTorch’s async broadcast
operation for broadcasting tensors to trainable parts
(Figure 1, green component).

We use the communication library to implement
model training. We have implemented a 1-Forward,
1-Backward schedule to keep the pipeline moving
smoothly. The training data is loaded on node-1, and
the forward tensors plus training labels are passed
using the communication library to the other nodes
for processing.

Figure 2: Pipeline Diagram

Figure 2 shows the pipeline diagram in one of
the runs with a small number of batches. Each row
(resource) represents a machine and the colored
portion represents the time spent in computing
the forward and training computations. Note that
the training computation includes a forward pass,
backward pass, and gradient updates - and is seen
in the thicker sections of the plot.

We can see that the pipeline has big bubbles
before reaching a steady state. This happens after
the training phase for batch 1 has concluded. The
uncolored sections show the bubbles that correspond
to the time spent in communication. We can see
the communication and computation overlapped in
this plot!

5 Evaluation Methodology

To validate our hypothesis presented in section 3,
we performed experiments to compare our pipelined
design with the baseline. All this experimentation
was done on a CloudLab cluster of 3 machines. For

the baseline, we created a copy of the model on
each of these machines and used dstat to measure
the amount of memory and CPU used during the
transfer learning computation. The same 3 machines
were then re-used to perform the pipelined setup
and we collected the memory and usage statistics
as the experiment ran.

We used CloudLab [1] to run our experiments. To
do so, we instanced multiple virtual machines (VMs)
on the platform, each with 5 Intel Xeon Silver 4114
cores, 16 GB of RAM, and 40 GB of disk space.

We used the pre-trained resnet50 model from
torch vision [11] for our experimentations and the
dataset, CIFAR10 [8], was also taken from the same
torchvision library. The entire dataset consists of
50,000 images corresponding to ten different classes.

6 Experiments And Interpretations

6.1 Memory Usage

Figures 3 and 4 show the variation in the amount of
memory used as the experiment progressed. The Y
axis on each of these plots show the memory used
in MB and the X axis plots the time in seconds.
Each of these plots are for different experiments
in which we varied the batch size from 1024 to 32.
Note that the time taken to run both the baseline
and pipelined versions increases as we increase the
batch size. This huge variation is not really a fun-
damental phenomenon, but just an artifact of the
way our experiments were set up - we fixed the
number of batches across all experiments. Hence, a
higher batch size simply means that the training is
happening over a larger number of images.

Figure 3(a) helps validate our previous hypothe-
sis! We see that the pipelined transfer learning took
roughly half the time as compared to the baseline
version (reflected in the X-axis). Also, the pipelined
version uses significantly less memory than the base-
line (reflected from the Y-axis). Figures 3(b), 3(c),
4(a), 4(b), 4(c) show the same plot for batch sizes
512, 256, 128, 64 and 32, respectively. We observe
that the benefits of pipelining are more prominent
with larger batch sizes. We think that this is because
the overheads of network transfer and synchroniza-
tion overshadow any benefits obtained when using
smaller batch sizes such as 32 and 64.

4



(a) Batch Size 1024 (b) Batch Size 512 (c)Batch Size 256
Figure 3: Memory usage with Time

(a) Batch Size 128 (b) Batch Size 64 Batch Size 32
Figure 4: Memory Usage with Time

6.2 CPU Utilization

Figures 5 and 6 show the CPU Utilization plots
for our implementation. The X-axis represents the
time in seconds, and the Y-axis represents the CPU
Utilization percentage. Similar to the memory us-
age plots, we varied the batch size from 1024 to
32 to generate different plots. The time taken for
each batch size shows the same results as memory
usage plots, i.e., the pipelined implementation takes
roughly half the time of the baseline implementa-
tion.

Regarding CPU Utilization, as we can see in Fig-
ures 5 and 6, the pipelined implementation shows
slightly lower CPU utilization compared to the base-
line. This behavior is due to the pipeline stalls or
bubbles that can occur in the pipelined implemen-
tation, as shown in Figure 2. We can also see in
Figure 5(a) that both the baseline and pipelined
implementations show significant variations in CPU
utilization, predominantly with larger batch sizes.
This behavior could be due to higher memory la-
tency or cache misses seen at larger batch sizes.

Overall, the pipelined implementation shows good
performance in terms of CPU utilization, despite
the occasional stalls or bubbles.

7 Future Work

We think that the following directions could be
taken to expand our preliminary work:

1. Optimal Model Split: In our current implemen-
tation, we have done a naive split of the model
across the three machines - each machine gets
roughly the same number of layers. We think
that benchmarking the complexity of each layer
and splitting them across machines to perform
better load balancing could potentially improve
memory usage, training times, and overall per-
formance.

2. Effect of queue sizes: Another interesting di-
rection is to study the effect of varying the
queue sizes described in section 4. Our hypoth-
esis is that larger queue sizes would allow for

5



(a) Batch Size 1024 (b) Batch Size 512 (c)Batch Size 256
Figure 5: CPU utilisation with Time

(a) Batch Size 128 (b) Batch Size 64 Batch Size 32
Figure 6: CPU utilisation with Time

more asynchronous communication opportuni-
ties. On the other hand, using a queue size of,
say, 1 would mimic a synchronous pipeline with-
out any overlap of computation and communi-
cation. However, a larger queue size might also
lead to more overheads due to more open con-
nections and memory required. Experimenting
with various queue sizes to study this trade-off
could be another interesting future direction!

3. Better label propagation: In our approach, we
only need the input data to be present at node
0; however, the labels for training need to be
present with all machines. Currently, we propa-
gate the labels along with each forward tensor
and then re-propagate them back to all ma-
chines with a broadcast. This adds some over-
head that can be avoided by implementing a
better label propagation mechanism that does
not require each label to be transmitted twice!

8 Conclusion

In this project, we adapted pipelined machine learn-
ing training to a transfer learning setting where
we fine-tuned pre-trained machine learning models
by training only the last few layers. To speed up
the forward tensor computation, we used the idea
of pipelined model parallelism to split the model
across different machines. And to avoid the weight
staleness issue commonly seen in pipelined training,
we trained 3 models together instead of training
only 1 model. Additionally, we used 1-Forward, 1-
Backward scheduling to keep the pipeline moving.

Our results show that the system finishes com-
putation in roughly half the time of the baseline
due to the benefits of pipelining. We also see an
improvement in memory usage due to the model
splitting. While we do see a slight reduction in
CPU Utilization due to pipeline stalls, overall the
pipelined implementation shows better timing and
memory usage and provides significant benefits to
training the models.

6



9 Contributions

During the ideation phase of the project, the teams
worked together to develop the idea and plan the im-
plementation. For the implementation, Daniel was
responsible for setting up the pre-trained ResNet
model, splitting it into multiple parts, and adding
additional trainable layers. He also prepared the dat-
aloader and training dataset. Mohil implemented
the communication library, which allowed for effi-
cient async communication between different nodes
using circular queues. Surabhi worked on implement-
ing a pipelined fashion ML model training using the
communication library, and the ML model splits.
She implemented the training logic with 1-Forward
and 1-Backward scheduling, and added code to flow
the data through the pipeline. Everyone worked col-
laboratively, helping each other debug the code and
ensuring the system worked correctly and without
deadlocks. For the experimentation phase, Mohil set
up the CloudLab instances and prepared the base-
line code for comparison. He also installed the code
on the instances to collect data. Daniel collected
and plotted the results for the baseline experiments,
while Surabhi collected and plotted the results for
the pipelined implementation.

References

[1] Dmitry Duplyakin, Robert Ricci, Aleksander
Maricq, Gary Wong, Jonathon Duerig, Eric
Eide, Leigh Stoller, Mike Hibler, David Johnson,
Kirk Webb, Aditya Akella, Kuangching Wang,
Glenn Ricart, Larry Landweber, Chip Elliott,
Michael Zink, Emmanuel Cecchet, Snigdhaswin
Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the
USENIX Annual Technical Conference (ATC),
pages 1–14, July 2019.

[2] Saar Eliad, Ido Hakimi, Alon De Jagger, Mark
Silberstein, and Assaf Schuster. Fine-tuning
giant neural networks on commodity hardware
with automatic pipeline model parallelism. In
2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 381–396. USENIX
Association, July 2021.

[3] Saar Eliad, Ido Hakimi, Alon De Jagger, Mark
Silberstein, and Assaf Schuster. Fine-tuning
giant neural networks on commodity hardware
with automatic pipeline model parallelism. In
2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 381–396. USENIX
Association, July 2021.

[4] Jinkun Geng, Dan Li, and Shuai Wang. Elas-
ticpipe: An efficient and dynamic model-
parallel solution to dnn training. In Proceed-
ings of the 10th Workshop on Scientific Cloud
Computing, pages 5–9, 2019.

[5] Lei Guan, Wotao Yin, Dongsheng Li, and Xi-
cheng Lu. Xpipe: Efficient pipeline model
parallelism for multi-gpu dnn training. arXiv
preprint arXiv:1911.04610, 2019.

[6] Qihang Huang, Zhiyi Huang, Paul Werstein,
and Martin Purvis. Gpu as a general pur-
pose computing resource. In 2008 Ninth In-
ternational Conference on Parallel and Dis-
tributed Computing, Applications and Technolo-
gies, pages 151–158, 2008.

[7] Norman P. Jouppi, Cliff Young, and et.al. Patil.
In-datacenter performance analysis of a tensor
processing unit. SIGARCH Comput. Archit.
News, 45(2):1–12, jun 2017.

[8] Alex Krizhevsky, Geoffrey Hinton, et al. Learn-
ing multiple layers of features from tiny images.
2009.

[9] Mu Li, David G. Andersen, Jun Woo Park,
Alexander J. Smola, Amr Ahmed, Vanja Josi-
fovski, James Long, Eugene J. Shekita, and
Bor-Yiing Su. Scaling distributed machine
learning with the parameter server. In Pro-
ceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’14, page 583–598, USA, 2014. USENIX
Association.

[10] Shen Li, Yanli Zhao, Rohan Varma, Omkar
Salpekar, Pieter Noordhuis, Teng Li, Adam
Paszke, Jeff Smith, Brian Vaughan, Pritam
Damania, and Soumith Chintala. Pytorch
distributed: Experiences on accelerating data

7



parallel training. Proc. VLDB Endow.,
13(12):3005–3018, sep 2020.

[11] Sébastien Marcel and Yann Rodriguez. Torchvi-
sion the machine-vision package of torch.
In Proceedings of the 18th ACM Interna-
tional Conference on Multimedia, MM ’10, page
1485–1488, New York, NY, USA, 2010. Associ-
ation for Computing Machinery.

[12] Deepak Narayanan, Aaron Harlap, Amar Phan-
ishayee, Vivek Seshadri, Nikhil R. Devanur,
Gregory R. Ganger, Phillip B. Gibbons, and
Matei Zaharia. Pipedream: Generalized
pipeline parallelism for dnn training. SOSP
’19, page 1–15, New York, NY, USA, 2019. As-
sociation for Computing Machinery.

[13] Minghui Qiu, Peng Li, Chengyu Wang, Hao-
jie Pan, Ang Wang, Cen Chen, Xianyan Jia,
Yaliang Li, Jun Huang, Deng Cai, and Wei
Lin. Easytransfer: A simple and scalable deep
transfer learning platform for nlp applications.
In Proceedings of the 30th ACM International
Conference on Information & Knowledge Man-
agement, CIKM ’21, page 4075–4084, New York,
NY, USA, 2021. Association for Computing
Machinery.

8


	Introduction and Motivation
	Background and Related work
	Distributed Model Training
	Data Parallelism:
	Model Parallelism:

	Transfer Learning

	Idea
	Potential Benefits

	Implementation Details
	Evaluation Methodology
	Experiments And Interpretations
	Memory Usage
	CPU Utilization

	Future Work
	Conclusion
	Contributions

